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1. Methods

Literature search timeframe: Publications published after the
previous guidelines [1] (i.e., from 2004eDecember 2014), were
considered. Some studies published in 2015 or 2016 during the
revision process have also been considered. References cited in the
previous guidelines are not repeated here, except for some relevant
publications; the previous guidelines are cited instead.
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2. Introduction

Calcium (Ca), phosphorus (P) and magnesium (Mg) are consid-
ered together as 98%, 80% and 65% of their body content within the
skeleton. The majority of Ca and P are found together as compo-
nents of microcrystalline apatite [Ca5(PO4)3(OH)], the bone mineral
which is forming in bone only if Ca and P are simultaneously
available in optimal proportions. Of the total body phosphorus 20%
is found in tissue. The molar Ca:P ratio is 1.67 in apatite and 1.3 in
the whole body. In addition to their function as skeleton

component, Ca, P, andMg also play major roles in many physiologic
processes [1,2].

In infants and children growth is the major determinant of
mineral requirements. This is best analyzed for fetal growth
where there is a linear association between fetal weight and
total body content of Ca and P (0.21 mmol (8.3 mg) Ca/g and
0.15 mmol (4.7 mg) P/g) [3e6]. Given an average fetal weight

gain of 17 g/kg/d before 35 weeks of gestation [7] the average
fetal accretion is 3.4 mmol Ca/kg/d and 2.6 mmol P/kg/
d respectively. This has been proposed as a reference mark for
growing preterm infants [8,9]. However, it is important to keep
in mind that in infants, children, and adolescents the mineral
intake should be adjusted to the individual weight gain/growth
to avoid an intake that is either too low or too high.

The following model is based on the average fetal weight gain
(17 g/kg/d) and mineral accretion. Approximately 98% of the fetal
calcium accretion (3.4 mmol/kg/d) is used for bone mineralization
(microcrystalline apatite formation). The corresponding phos-
phorus accretion in apatite is 2 mmol/kg/d (98 % ! 3.4 mmol/kg/d/
1.67). The remaining fetal phosphorus accretion of 0.6mmol/kg/d is
used for tissue accretion. Protein is the major determinant of tissue
accretion. It has been estimated that 1 g of protein accretion needs
0.3 mmol (9.3 mg) of phosphorus [10e12]. Therefore, in the present
calculation model the remaining 0.6 mmol of phosphorus corre-
sponds to a protein accretion of 2 g/kg/d. This is a reasonable es-
timate of average fetal protein accretion [3e6].

Taking all these considerations into account, the following
theoretical model for estimation of P requirements has been pub-
lished: [10e12]

Table: Recommendations for calcium, phosphorus and magnesium in PN

R 8.1 In infants, children and adolescents on PN appropriate amounts of Ca, P and Mg should be provided to ensure optimal growth and bone mineralization (GPP,
strong recommendation)

R 8.2 The mineral accretion of the fetus, healthy infant, child, and adolescent may be used as a reference for Ca, P and Mg provision (GPP, conditional
recommendation)

R 8.3 In the individual infant appropriate PN should provide a simultaneous slight surplus of Ca, P, and Mg to ensure optimal tissue and bone mineral accretion
(GPP, conditional recommendation)

R 8.4 Ca infusion may be used for prevention and treatment of early neonatal hypocalcaemia that is common and generally not associated with obvious clinical
problems such as tetany (GPP, conditional recommendation)

R 8.5 In preterm infants on PN who were exposed to maternal Mg therapy, Mg intakes need to be adapted to postnatal blood concentrations (LoE 2, RG B,
conditional recommendation)

R 8.6 Acidic solutions packaged in glass vials, such as calcium gluconate, are contaminated with aluminum and should not be used in PN (LoE 3, RG 0, strong
recommendation)

R 8.7 It is recommended to use organic Ca and P salts for compounding of PN solutions to prevent precipitation (GPP, strong recommendation)
R 8.8 The adequacy of Ca and P intakes in preterm infants can be adjusted until both start being excreted simultaneously with low urine concentrations

(>1 mmol/L) indicative of a slight surplus (extrapolated evidence derived from enteral nutrition LoE 2+ studies, RG B, conditional recommendation)
R 8.9 The recommended parenteral intake for calcium, phosphorus, andmagnesium intake in newborns and children on parenteral nutrition inmmol (mg)/kg/d is

as follows (LoE 2, 3 and 4, RG 0, conditional recommendation)

Age Ca mmol (mg)/kg/d P mmol (mg)/kg/d Mg mmol (mg)/kg/d

Preterm infants during the first days of life 0.8e2.0 (32e80) 1.0e2.0 (31e62) 0.1e0.2 (2.5e5.0)
Growing Premature 1.6e3.5 (64e140) 1.6e3.5 (50e108) 0.2e0.3 (5.0e7.5) infants
0e6 m* 0.8e1.5 (30e60) 0.7e1.3 (20e40) 0.1e0.2 (2.4e5)
7e12 m 0.5 (20) 0.5 (15) 0.15 (4)
1e18 y 0.25e0.4 (10e16) 0.2e0.7 (6e22) 0.1 (2.4)

*Includes term newborns.
R 8.10 In preterm infants with intrauterine growth restriction on PN careful monitoring of the plasma phosphate concentration within the first days of life is

required to prevent severe hypophosphataemia that can result in muscle weakness, respiratory failure, cardiac dysfunction, and death (LoE 3, RG 0, strong
recommendation)

R 8.11 In preterm infants on early PN during the first days of life lower Ca, P andMg intakes are recommended than in growing stable preterm infants (Table 1) (LoE
2, RG B, conditional recommendation)

R 8.12 In early PNwhen calcium and phosphorus intakes are low (Table 1) and protein and energy are optimized it is recommended to use a molar Ca:P ratio below
1 (0.8e1.0) to reduce the incidence of early postnatal hypercalcaemia and hypophosphataemia (LoE 2, RG B, strong recommendation)

R 8.13 In infants and children on PN regular monitoring of the individual alkaline phosphatase, Ca, P and Mg serum concentrations and Ca and P urine
concentrations is required (Extrapolated evidence from LoE 2 and 3 studies, RG 0, strong recommendation)

R 8.14 In infants and children on long term PN the risk of metabolic bone disease requires periodic monitoring of Ca, P, vitamin D and bone mineral status (LoE
2 + and 3, RG 0, strong recommendation)

R 8.1 In infants, children and adolescents on PN appropriate amounts
of Ca, P and Mg should be provided to ensure optimal growth
and bone mineralization (GPP, strong recommendation,
strong consensus)

R 8.2 The mineral accretion of the fetus, healthy infant, child, and
adolescent may be used as a reference for Ca, P and Mg provision
(GPP, conditional recommendation, strong consensus)

R 8.3 In the individual infant appropriate PN should provide a
simultaneous slight surplus of Ca, P, and Mg to ensure optimal
tissue and bone mineral accretion, (GPP, conditional
recommendation, strong consensus)
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P requirement (mmol) ¼ [calcium deposition (mmol/kg)/
1.67] þ [protein accretion (g)*0.33]

Ca, P and protein accretion are quantitatively not known in the
individual infant. In any case, optimal PN should provide a simul-
taneous slight surplus of Ca and P to ensure optimal tissue and bone
mineral accretion. Based on fetal total body analysis the theoretical
optimal molar Ca:P ratio in PN for achievement of fetal body
composition would be 1.3 in stable growing infants.

Physiologically the provision of P for tissue accretion in the
growing body has priority. In cases of relative P deficiency, available
P is primarily directed to the cellular metabolism, reducing bone
mineralization or even inducing bone demineralization [13].
Therefore, the first priority in provision of early or incomplete PN is
the provision of sufficient P in order to avoid severe hypo-
phosphataemia, which may be life threatening. Consequently,
especially in early or incomplete PN with high amino acid intake a
molar Ca:P ratio in the PN solution less than 1.3 (i.e. 0.8e1.0) is
required to prevent hypophosphataemia [11,13e16].

In PNminerals are directly available for tissue accretion and bone
mineralization in contrast to enteral nutrition where the individual
mineral absorption has to be considered (especially calcium ab-
sorptionwhich varies considerably from20% to 80% [17]). Losses via
skin, feces and especially urine (e.g. transient phosphorus loosing
tubulopathy [18]) have to be taken into account as well.

Owing to the lack of data, it is not possible to perform an
equivalent calculation of the requiredmineral intake for infants and
children.

3. Calcium

Ca is the most abundant mineral in the body. In blood, Ca exists
in three fractions: ionized Ca (~50%), protein bound Ca (~40%), and a
small amount of Ca that is complexed with other molecules such as
citrate and phosphate. Blood Ca is tightly controlled by the actions
of several hormones that maintain Ca homeostasis, especially
parathyroid hormone (PTH), calcitonin and 1,25(OH)2-vitamin D.
Themain homeostatic control of blood Ca is deposition in or release
from bone. Renal reabsorption of filtered Ca depends on Ca plasma
concentration, Ca requirements, renal tubular function, and last but
not least the availability of P for microcrystalline apatite formation
in growing infants (e.g. corresponding to hypophosphataemia there
is paradoxical calciuria in preterm infants fed human milk in the
absence of P fortification) [2,19e23].

Total body Ca content is around 28 g in term newborns.
Approximately 1 kg of Ca is deposited between birth and adult-
hood. In children, daily Ca accretion rates average between 3.7 and
5.0 mmol/d (150 and 200 mg/d). However, since growth velocity is
not uniform, accretion rates may be as high as 10 mmol/d (400 mg/
d) during infancy and puberty. A study using dual energy x-ray
absorptiometry found an average bone Ca accretion rate of
5.5mmol/d (220mg/d) and 7.9mmol/d (317mg/d) in girls and boys
respectively during stage III puberty [24].

In newborns, owing to the interruption of placental transfer at
birth, early hypocalcaemia rapidly occurs during the first 24e48 h
of life owing to a relative immaturity of hormonal control (delayed
PTH surge). This early neonatal hypocalcaemia is common and
generally not associated with obvious clinical problems such as

tetany. Ca infusion will usually prevent or treat early neonatal
hypocalcaemia [25,26].

In children, recommendations for enteral intake assume an
absorption rate of 50e60% [2]. In PN Ca supplies may be limited
owing to the risk of precipitation of Ca-P-salts [12,19]. However, this
can be prevented by using organic phosphorus compounds such as
glycerophosphate [26e28].

4. Phosphorus

In addition to its presence in bone, P is also the principal intra-
cellular anion,mainly in the formof phosphate. P plays a critical role
in energy metabolism. In cells, most of the P is present in adenosine
triphosphate, nucleic acids, and membranes. P deficiency results in
inadequate supplies of energy-rich phosphates and, in particular,
inhibition of glyceraldehyde-3-phosphate dehydrogenase, which
plays a key position in glycolysis. Thereby P deficiency reduces
adenosine triphosphate and 2,3-diphosphoglycerate levels and
leads to left displacement of the oxygen-hemoglobin dissociation
curve with decreased peripheral oxygen uptake and transport. Se-
vere P deficiency may induce several clinical disorders including
muscle weakness, delay in weaning from respiratory support,
glucose intolerance, nosocomial infections and death [29e31].

Two thirds of blood P is organic and 1/3 is inorganic. Blood P
concentration is usually measured as phosphate concentration that
may vary according to growth, intake and renal excretion. Renal
reabsorption threshold of phosphate is higher in infants than in
adults [2,12,18,19]. Therefore, particular attention should be paid to
phosphate laboratory reference values in newborns, especially in
premature infants. Indeed, the lower limit of the reference value is
higher in premature infants (1.6 mmol/l, 5 mg/dl) than in adults
(1.0 mmol/l, 3 mg/dl). As laboratories frequently use adult refer-
ences, this may result in underestimation of hypophosphataemia in
these infants [12,19,31].

In newborn infants total body P is around 16 g rising to
600e900 g in an adult with 80% in bone and 9% in skeletal muscle
[1]. P retention is related to bone mineralization, lean body mass
accretion, and protein retention. Within physiological limits for
compounding of PN the previously introduced equation may be
used for estimation of the Ca:P ratio in PN.

P intake (mmol) ¼ [calcium intake (mmol/kg)/1.67] þ [protein ac-
cretion (g)*0.3]

In stable premature infants on parenteral nutrition considering
an optimal protein accretion of 2e2.5 g/kg/d and a Ca intake of
2 mmol/kg/d (which is below the intrauterine Ca accretion), the
ideal Ca:P ratio seems close to 1, between 0.8 and 1.2 [2,12,19].
Considering the identical protein accretion of 2e2.5 g/kg/d with a
Ca intake of 3 mmol/kg Ca (which is closer to the intrauterine Ca
accretion), a higher Ca:P ratio may be used. It is important to keep
in mind that this is different in enteral nutrition.

5. Magnesium

Magnesium is the fourth most abundant mineral in the body
and the second most abundant intracellular cation. In blood,
about 1/3 of Mg is attached to plasma proteins and the

R 8.4 Ca infusion may be used for prevention and treatment of early
neonatal hypocalcaemia that is common and generally not
associated with obvious clinical problems such as tetany
(GPP, conditional recommendation, strong consensus).

R 8.5 In preterm infants on PN who were exposed to maternal Mg
therapy, Mg intakes need to be adapted to postnatal blood
concentrations (LoE 2, RG B, conditional recommendation,
strong consensus)
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remaining 2/3 is filtrated by the kidney [2]. Particular attention
should also be paid to Mg laboratory reference values in new-
borns, which are higher than in adults. Recently, a normal range
of 0.7e1.5 mmol/L has been suggested for premature and term
newborns during the first two weeks of life [32]. However, total
blood Mg concentration is not the best estimate of the biologi-
cally active fraction (ionized Mg). The concentration in red blood
cells (around 2.5 mmol/L) represents a better indicator of Mg
content in tissues [2].

Fetal accretion is 0.12e0.20 mmol/kg/d (2.9e4.8 mg/kg/d)
[8,33,34]. In the term newborn the total body Mg is around 0.8 g
rising to 25 g in adulthood. Intakes and renal function play a critical
role in Mg homeostasis. Around one third of Mg intake is usually
excreted in the urine and 5e15% of filtrated Mg is reabsorbed. Mg is
essential to the activity of the Mg-dependent adenyl-cyclase
involved both in the PTH release and activity on bone. Thus, in Mg
deficiency there is both deficient PTH release and peripheral
resistance to PTH with subsequent hypocalcaemia [2].

Requirements are also frequently based on enteral nutrition
data. Intestinal absorption rate is usually between 35 and 50%. Mg
retention is usually around 0.08 mmol/kg/d in infants fed human
milk and up to 0.15 mmol/kg/d in premature infants fed enriched
preterm infant formulas [2].

Premature newborns exposed to maternal Mg sulfate therapy
(preeclampsia, tocolysis) may have high levels of Mg in the first
days of life. In addition, their low postnatal glomerular filtration
rates during the first week of life limit their ability to excrete
excessive Mg intakes. Thus, Mg intakes must be limited in new-
borns of mothers that received Mg sulfate before delivery and in-
takes need to be adapted to postnatal blood concentrations.

6. Parenteral mineral supply

When selecting compounds suitable for PN, the potential for Ca
cations to precipitate with inorganic phosphate anions must be
considered. To some degree this can be avoided by initial mixing of
the Ca salt with amino acids and glucose solution before diluting
the solution and by adding phosphate salt at the end of the process.
The use of organic phosphorus compounds circumvents this
problem. Inorganic (Ca chloride) or organic (Ca gluconate, Ca
glycerol-phosphate) Ca salts can be used in PN solutions. Chloride
ions may increase the anion gap and lead to metabolic acidosis
[12,35,36]. Ca gluconate stored in glass vials is contaminated with
aluminum. Therefore, Ca gluconate packed in polyethylene is rec-
ommended to reduce aluminum contamination of parenteral
nutrition (PN) [37]. Aluminum intake should not exceed 5 mg/kg/d.
Ca glycerophosphate is an adequate source of Ca and P but it is not
registered for parenteral use [12].

P can be provided as inorganic (sodium and potassium phos-
phate) or organic (fructose 1e6 diphosphate, sodium glycer-
ophosphate, disodium glucose 1 phosphate) salts. Neutral
potassium phosphate ([K2HPO4] in contrast to acid potassium
phosphate [KH2PO4]) induces a risk of precipitation that limits its

use in PN. Disodium glucose-1-phosphate is widely used but its
sodium content may limit its early utilization in premature infants
[12,28].

Mg may be provided using Mg sulfate or Mg chloride. However,
Mg chloride usually increases the anion gap increasing the risk of
metabolic acidosis. Thus, Mg is usually administered asMg sulphate
with few compatibility issues.

The adequacy of Ca and P intakes can be adjusted until both are
excreted simultaneously with low urine concentrations (>1 mmol/
L) indicative of a slight surplus [2,19e23].

6.1. Requirements for calcium, phosphate and magnesium in
children

Recommendations for parenteral intake of Ca, P and Mg are
given in the Table 1. In individualized PN, especially if Ca and P
intakes at the upper range are used, stability, compatibility and
solubility of minerals need to be tested by the local pharmacy to
avoid the risk of precipitation [27]. Blood concentrations and urine
output require periodic monitoring during PN (see guideline on
monitoring). In particular, monitoring of the plasma phosphate
concentration is critical. In cases of relative P deficiency, available P
is primarily directed to cellular metabolism, reducing bone
mineralization or even inducing bone demineralization [13].
Hypophosphataemia was observed in preterm infants on PN with
inappropriately low P intake [13] and high amino acid dosage
[15,16] (refeeding-like syndrome) [11,12,14e16]. In significantly
malnourished patients hypophosphataemia has also been observed
during nutritional rehabilitation (refeeding syndrome). Extreme
hypophosphataemia can result in muscle weakness, respiratory
failure, cardiac dysfunction, and death [38].

6.2. Requirements in preterm infants and newborns

Owing to the wide range of individual growth velocities in
preterm infants (5e20 g/kg/d), a wide range of requirements was
proposed in previous recommendations: Ca 1.0e4.0 mmol/kg per
day, P 0.75e3.0 mmol/kg per day, and a molar Ca:P ratio around 1.3
(mass ratio around 1.7) [1,39].

R 8.6 Acidic solutions packaged in glass vials, such as calcium gluconate,
are contaminated with aluminum and should not be used in PN
(LoE 3, RG 0, strong recommendation, strong consensus)

R 8.7 It is recommended to use organic Ca and P salts for compounding
of PN solutions to prevent precipitation (GPP, strong
recommendation, strong consensus)

R 8.8 The adequacy of Ca and P intakes in preterm infants can be
adjusted until both start being excreted simultaneously with low
urine concentrations (>1 mmol/L) indicative of a slight surplus
(extrapolated evidence derived from enteral nutrition LoE
2þ studies, RG B, conditional recommendation, strong consensus)

R 8.9 The recommended parenteral intake for calcium, phosphorus,
and magnesium in newborns and children on parenteral
nutrition in mmol (mg)/kg/d is given in Table 1 (LoE 2, 3 and 4,
RG 0, conditional recommendation, strong consensus)

R 8.10 In preterm infants with intrauterine growth restriction on PN
careful monitoring of the plasma phosphate concentration
within the first days of life is required to prevent severe
hypophosphatemia that can result in muscle weakness,
respiratory failure, cardiac dysfunction, and death (LoE 3,
RG 0, conditional recommendation, strong consensus)

R 8.11 In preterm infants on early PN during the first days of life lower
Ca, P and Mg intakes are recommended than in growing stable
preterm infants (Table 1) (LoE 2, RG B, conditional
recommendation, strong consensus)

R 8.12 In early PN when calcium and phosphorus intakes are low
(Table 1) and protein and energy are optimized it is
recommended to use a molar Ca:P ratio below 1 (0.8e1.0) to
reduce the incidence of early postnatal hypercalcaemia and
hypophosphataemia (LoE 2, RG B, strong recommendation,
strong consensus)

R 8.13 In infants and children on PN regular monitoring of the
individual alkaline phosphatase, Ca, P and Mg plasma
concentrations and Ca and P urine concentrations is required
(Extrapolated evidence from LoE 2 and 3 studies, RG 0, strong
recommendation, strong consensus)
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Very low birthweight and small for gestational age infants are at
risk for early hypophosphataemia owing to their high P needs for
growth [11,12,31]. In these infants, tubular phosphate reabsorption,
which is usually 85e90%, increases to its maximum. In addition, Ca
cannot be fixed in the bone inducing hypercalcaemia, hyper-
calciuria, and if prolonged bone demineralization, osteopenia, and
nephrocalcinosis [11,19,31]. In early PN with low total Ca and P
intake, molar Ca:P ratios below 1 (0.8e1.0) may reduce the inci-
dence of early postnatal hypophosphataemia and consequent
hypercalcaemia when protein and energy intakes are optimized
from the first day of life [11,12,19].

Thereafter, the requirements of premature infants strongly
depend on the individual growth velocity and are between 1 and
4 mmol/kg/d of Ca (40e160 mg/kg/d) and 0.75e3 mmol/kg/d of P
(23e93 mg/kg/d) with a molar Ca:P ratio around 1.3 and between
0.2 and 0.3 mmol/kg/d for Mg [1,33]. It is important to consider that
the individual Ca, P and Mg homeostasis needs to be monitored
regularly.

For term infants, data obtained from breast fed infants can be
applied to PN assuming an absorption rate of 50e60% for Ca,
85e95% for P, and 35e50% for Mg [1,2]. Therefore, taking into ac-
count a protein retention of 1e1.5 g/kg/d, term newborn re-
quirements are estimated to be between 0.8 and 1.5 mmol/kg/d for
Ca, between 0.7 and 1.3 mmol/kg/d for P, and between 0.1 and
0.2 mmol/kg/d for Mg.

6.3. Requirements in infants and children on long term PN

Hypercalciuria and negative calcium balance are potential
complications of PN and can be attenuated in the short-term by
intravenous phosphate [41,42]. This effect is not caused by alter-
ations in the PTH-1,25-dihydroxyvitamin D axis, but likely reflects P
deficiency.

Infants and children on long term PN are at risk of developing
“metabolic bone disease” (MBD) which is characterized by incom-
plete mineralization of osteoid with consequent disturbances
ranging from osteopenia to severe bone disease with fractures
[43e48]. The cause of MBD is multifactorial but mainly a calcium
and/or phosphate deficiency. Other factors involved are negative
calcium balance, hyperparathyroidism, and excessive vitamin D
intake or vitamin D toxicity [49e53] and last but not least toxicity
from aluminum in PN fluid. Although the latter has decreased with
improvements in compounding [54,55], recent publications still
suggest that it remains almost impossible to reduce the aluminum

intake below 5 mg/kg/day in children <30 kg with currently avail-
able PN solutions [56,57]. Frequently hypercalciuria and MBD are
associated.

Adequacy of phosphate intake has empirically been shown to be
a key component in long term PN in infants and children not only
for energy metabolism but also for optimal bone mineralization. In
a cohort of children aged 4e13 years receiving home cyclic PN for 4
consecutive years hypercalciuria was reversed and painful bone
disease did not occur at a Ca intake of 0.35 mmol/kg/d and a
phosphorus intake of 0.7 mmol/kg/d in absence of vitamin D
administration [58]. In these children Ca and P intake were
significantly higher than previously recommended and an inverse
Ca:P ratio of 0.5 in absence of vitamin D administration was used.
These data suggest that the upper limit for recommended Ca and P
intake should be increased (Table 1).

BMD scores assessed in the available pediatric studies [43e45]
do not allow clear conclusions about optimum Ca and P intake for
infants on long term PN. However, in contrast to the previous
recommendation, these data suggest that increasing the Ca
recommendation up to 0.35e0.4 mmol/kg/d and providing an
excess of phosphorus (0.7 mmol/kg/d) using a Ca:P ratio less than 1
(close to 0.5) might be beneficial, even though this does not match
the distribution of these elements in the human body [6,59].

The high prevalence of MBD [43e48] requires careful and pe-
riodic (see guideline on monitoring) monitoring of Ca, P, vitamin D
and bone mineral status (e.g. by DEXA).
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