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ARTICLE INFO ABSTRACT
Keywords: Neonatal jaundice is a common and potentially fatal health condition in neonates, especially in low and middle
Neonatal jaundice income countries, where it contributes considerably to neonatal morbidity and death. Traditional diagnostic

Non-invasive detection
Machine learning
Deep learning

approaches, such as Total Serum Bilirubin (TSB) testing, are invasive and could lead to discomfort, infection
risk, and diagnostic delays. As a result, there is a rising interest in non-invasive approaches for detecting
jaundice early and accurately. An in-depth analysis of non-invasive techniques for detecting neonatal jaundice

Bilirubin is presented by this review, exploring several Al-driven techniques, such as Machine Learning (ML) and Deep
Learning (DL), which have demonstrated the ability to enhance diagnostic accuracy by evaluating complex
patterns in neonatal skin color and other relevant features. It is identified that AI models incorporating
variants of neural networks achieve an accuracy rate of over 90% in detecting jaundice when compared to
traditional methods. Furthermore, satisfactory outcomes in field settings have been demonstrated by mobile-
based applications that use smartphone cameras to estimate bilirubin levels, providing a practical alternative
for resource-constrained areas. The potential impact of Al-based solutions on reducing neonatal morbidity
and mortality is evaluated by this review, with a focus on real-world clinical challenges, highlighting the
effectiveness and practicality of Al-based strategies as an assistive tool in revolutionizing neonatal care through
early jaundice diagnosis, while also addressing the ethical and practical implications of integrating these
technologies in clinical practice. Future research areas, such as the development of new imaging technologies
and the incorporation of wearable sensors for real-time bilirubin monitoring, are recommended by the paper.
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1. Introduction

Jaundice is a prevalent indication of a medical condition that is
defined by a yellowish coloring of the skin, the white part of the eyes
(scelera), and other mucous membranes. It is caused by high amounts
of bilirubin in the blood, also known as hyperbilirubinemia, which can
result from various factors such as alcoholic liver disease, hepatitis,
hemolysis, or bile duct obstruction. Jaundice can be life-threatening
for both newborns and adults, and it is challenging to detect even
for experienced physicians, with a detection rate of approximately
70 percent. [1,2]. In newborns, this condition is known as neonatal
jaundice and it usually occur within the first week of life due to the
neonate’s immature liver, which struggles to process and eliminate
bilirubin effectively [3].

Symptoms of excessive sleeping, leading to poor feeding and nu-
trition, are often exhibited by newborns with jaundice, affecting their
overall well-being [4]. Neonatal jaundice is mostly responsible for
hospitalization or readmission of newborns for intensive care in the
first week of life, in the absence of timely diagnosis and treatment,
fatality or permanent brain damage may occur [3]. Up to 60% of
term babies and 80% of preterm babies globally were reported to
have developed neonatal jaundice within their first week of life [5,6]
and 10% of newborns that were breastfed developed jaundice up to
a maximum of four weeks old. [7,8]. This common occurrence of
jaundice in newborns can be attributed to physiological factors related
to bilirubin metabolism.

Bilirubin is a yellowish pigment that is produced when there is a
breakdown of old red blood cells, these red blood cells survive for a
shorter time in newborns than they do in adults, which is about 120
days [9,10]. As a result, newborns have a significantly elevated amount
of red blood cells that must be broken down, resulting to increased
bilirubin levels [4]. Jaundice may become significantly visible when
serum bilirubin level exceeds 2.0 to 2.5 mg/dl. [9] in their study states
that in newborn infants, a bilirubin level over 5 mg/dL (85 umol/1)
indicates clinical jaundice, whereas, jaundice is indicated in adults
at a level of 2 mg/dL (34 umol/l). Neonates with jaundice exhibit a
distinct icteric sclera, yellowing of the forehead and sternum. The onset
of jaundice first becomes apparent on the newborn baby’s face, then
spreads downwards to the trunk and then to the limits as the bilirubin
level rises. [9]. Short-term excess bilirubin is harmless, but a high
level in newborns can lead to Kernicterus, a chronic form of bilirubin
encephalopathy, which can cause cerebral palsy, deafness, language
difficulties, developmental delay, or even death [4,7] as highlighted in
Fig. 1.

Neonatal jaundice is divided into two categories; Physiological jaun-
dice which becomes evident between 24 to 72 h after birth and dis-
appears between 10 to 14 days of life [7] and pathologic jaundice
which is the most severe type of jaundice, it appears within 24 h after

birth, and is often associated with a quick rise in the bilirubin levels of
newborns due to the elevated breakdown of red blood cells [7]. Given
the differences in onset and severity between physiological and patho-
logic jaundice, accurate and timely diagnosis is crucial for effective
management.

A combination of clinical, medical, and non-invasive methods is
typically employed to diagnose neonatal jaundice. By visually observ-
ing the color of the skin and sclera of the eye, seasoned medical
practitioners can clinically detect neonatal jaundice [11,12], which is
characterized by yellowish discoloration of the skin and eyes when
bilirubin levels exceed specific thresholds [13]. However, medical ap-
proaches involving invasive blood tests to ascertain the actual levels of
Total Serum Bilirubin (TSB) has to be done to validate the observations
recorded. A syringe is used to collect blood from a vein in the patient’s
arm, the sample is subsequently tested to determine the bilirubin level
in the patient’s blood. Typically, the patient will feel minor discomfort
and a bruise where the needle was inserted [13]. This approach is
considered to be the gold standard but it is invasive and causes pain
and discomfort for the neonate [4,6]. This invasive technique causes
discomfort for the infant, raises the possibility of infection at the sam-
pling site, and worries the parents. However, the non-invasive approach
is fast, effortless to use, and painless, which is particularly beneficial for
neonates.

Non-invasive methods includes transcutaneous bilirubinometry
(TcB) applied to eyes, facial, and chest skin images [14,15], optical
spectroscopy, and reflectance spectroscopy applied to thumb nail im-
ages [8,16]. These approaches offer less discomfort, lower infection
risk and early detection, however, there are associated limitations with
these approaches particularly regarding accuracy across different skin
tones and the need for regular calibration [8,16]. In order to tackle
some of the aforementioned limitations, some non-invasive approaches
adopts the use of image processing tools. For instance, the work
of [17] extracted RGB, YCbCr, and HSV color space features to classify
neonatal images, [3] conducted semantic mask detection and scelera
segmentation using LabelMe and [9] achieved face landmark detection
and ROI selection using Histogram of Oriented Gradients.

Early detection of neonates on the verge of severe hyperbilirubine-
mia and kernicterus is highly crucial to ensure effective treatment,
especially for their immature central nervous system particularly to
prevent the adverse outcomes usually associated with hyperbilirubine-
mia [4]. Jaundice may not be apparent at the time of hospital discharge
as many newborns are discharged within 48 h after birth. The early
release from the hospital after the birth of the newborn has sad-
dled parents with the responsibility to identify neonatal jaundice and
promptly seek medical attention [3]. Mothers are often the first to
notice jaundice, especially outside of hospitals. Maternal education and
empowerment are essential for timely jaundice detection, particularly
in low- and middle-income countries as it is crucial for effective in-
terventions to address severe neonatal jaundice burden [18]. Building
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Fig. 1. The figure illustrates the main causes and effects of neonatal jaundice. The causes include an immature liver, breakdown of the red blood cells, and buildup of bilirubin,

while the effects are kernicterus, celebral palsy, hearing loss, and death.

on the importance of early detection, several non-invasive methods
have been developed to monitor bilirubin levels and manage neonatal
jaundice effectively. Three broad categories of non-invasive approaches
have been documented by previous research;

Transcutaneous Bilirubinometry (TcB) is used to estimate bilirubin
levels in the blood by measuring the intensity of yellow pigmentation
on the skin. A small device emits light on the forehead or sternum,
bilirubin absorbs light in a specific spectrum, particularly in the blue
and green ranges (around 450-500 nm). TcB is commonly used with
devices like Bilicam [19] and Bilicapture [20]. However, potential inac-
curacies can occur in certain populations, and the need to calibrate and
validate the device’s results against serum bilirubin levels makes it chal-
lenging to use. Optical spectroscopy measures bilirubin concentration
by analyzing light interactions with the skin. It uses a device such as
Bilicheck [21] to measure the intensity of light absorbed and scattered
by skin components like melanin, hemoglobin, and bilirubin. Though it
facilitates timely clinical decisions and is safe for newborns due to its
low-intensity light, variations in skin pigmentation can affect accuracy.
Reflectance spectroscopy measures the intensity of reflected light at
different wavelengths by directing light at multiple wavelengths onto
the skin and interacting with melanin, hemoglobin, and bilirubin [22].
The JM-103 is a commonly used reflectance spectroscopy device [14].
Although it eliminates the need for blood samples, variations in skin
pigmentation can affect accuracy and require regular calibration.

While devices like the Bilicam, Bilicapture and JM-103 offer a non-
invasive alternative to traditional blood tests, their reliance is limited
by factors such as skin pigmentation, which can compromise accuracy.
To address these challenges, recent research has increasingly turned
to Artificial Intelligence (AI) to enhance the reliability of non-invasive
methods. The focus of this research is on previous works that employed
Al non-invasive methods for diagnosing neonatal jaundice, aimed at
improved preventive care and treatment protocols for neonates. This
research review is guided by the research questions given below:

1. What are the current Machine Learning (ML) and Deep Learning
(DL) approaches adopted in Non-invasive Neonatal Jaundice
Detection?

2. What is the extent of effectiveness of these identified Machine
Learning and Deep Learning techniques deployed in Non-
invasive Neonatal Jaundice Detection?

3. What are the identified shortcomings associated with using Ma-
chine Learning and Deep Learning techniques for non-invasive
diagnosis of neonatal jaundice?

4. What performance evaluation metrics are utilized and how does
it impact the performance assessment of the diagnostic tools?

1.1. Motivation and objectives

Jaundice in neonates is the prevalent reason of deaths and illness
associated with newborns in the African continent and more specifically
in West Africa. According to [6], 6 out of every 10 newborns are
affected by jaundice. Hence, there is no overemphasizing the fact
that jaundice is very deadly in neonates especially if not detected
early enough. ML and DL approaches have demonstrated significant
potentials for tackling this challenge [22-24]. Exploring artificial intel-
ligence (AI) approaches for detecting neonatal jaundice is motivated by
the prospects for an alternative non-invasive approach with enhanced
accuracy and efficiency. Al algorithms can analyze complex patterns in
data, distinguishing bilirubin levels from other variables such as skin
pigmentation and lighting conditions [15,24].

Despite the substantial potential of Al, particularly deep learn-
ing models, to improve medical diagnosis and decision-making, its
complete integration into clinical practice is impeded by a lack of
readability and transparency [25,26]. It is essential to concentrate on
methods that reduce uncertainty and clearly define AI predictions in
order to increase acceptability. This ensures that Al supports human
judgment rather than replaces it, particularly in complex fields such
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as medicine where skill, insights, and accountability are essential [27].
Personalized diagnostic results can be achieved by training these al-
gorithms to consider for individual variations. Incorporating Al tools
into diagnostic devices, enables the enhancement of their functionality,
predict jaundice severity levels, and uncover new clinical insights.
However, an objective assessment and analysis of the existing literature
is crucial to provide insights into the most recent approaches, their
effectiveness, constraints, and future research prospects.

An extensive overview of machine learning and deep learning-based
applications for non-invasive neonatal jaundice detection is aimed to be
offered to researchers, practitioners, and policymakers in this review.
This will enhance their understanding of the field and guide towards
the development of reliable and effective detection methods. Hence,
this research makes several considerable contributions to the field of
non-invasive neonatal jaundice detection as highlighted below;

1. In this work, we provided a comprehensive review of non-
invasive technologies for diagnosing neonatal jaundice by as-
sessing the traditional methods, such as the total serum biliru-
bin (TSB) measure in comparison to modern non-invasive ap-
proaches while highlighting the advancements and ongoing chal-
lenges in the field.

2. The study critically analyzed the application of machine learn-
ing (ML) and deep learning (DL) methodologies in diagnosing
neonatal jaundice, identified their strengths and limitations, par-
ticularly in terms of accuracy, sensitivity, specificity, and clinical
applicability.

3. This research work outlined key areas for future research, such
as the development of novel imaging technologies like hy-
perspectral imaging, real-time bilirubin monitoring with wear-
able sensors, and the curation of diverse, annotated large-scale
datasets.

4. It also addressed ethical and practical considerations for in-
tegrating these technologies into clinical practice, aiming to
improve early detection and treatment of neonatal jaundice and
reducing infant mortality related to this condition.

The following sections make up the rest of this paper: Section 2
details the review methodology, Section 3 discusses the data acquisition
stage, Section 4 highlights the AI approaches and metrics, Section 5
covers the results and discussion of the study while Section 6 concludes
the study.

2. Review methodology

In this review of non-invasive diagnosis of neonatal jaundice based
on machine learning (ML) and deep learning (DL) techniques, the
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) guideline [28] was adopted, allowing for transparency and
standardized documentation of the research method.

2.1. Search strategy

This study implemented a comprehensive search strategy across
multiple online databases, notably IEEE Xplore, PubMed, ACM Digi-
tal Library, Scopus, Google Scholar, Science Direct, Academic Search,
Web of Science and JSTOR, searching for relevant publications from
January, 2014 to August, 2024. To identify these keywords, we relied
on a set of predefined general items which are as follows: Neona-
tal Jaundice, Non-invasive Detection, Al approaches. A combination
of keywords derived from the general items include: “non-invasive”,

” o«

“jaundice diagnosis”, “neonatal jaundice” “neonates”, “jaundice detec-
tion”, “detection”, “machine learning” and “deep learning”. Table 1
presents the search phrases and keywords used. Development of the
search strategy was achieved by consulting with the PRISMA guide-
lines [28]. A structured algorithm was utilized to carry out the search

described in Table 2
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2.2. Literature selection and inclusion criteria

The literature source selection process ensures transparency, relia-
bility, and replicability in research. The research titles and abstracts of
selected studies were carefully scrutinized by the reviewers to deter-
mine how suitable they are for this study. Fig. 2 illustrate the study
selection process, following which the full text of prospectively eligible
studies for inclusion in the review was obtained and a set of inclu-
sion and exclusion criteria to identify suitable studies was developed.
The inclusion covered studies conducted using machine learning, deep
learning, and an ensemble of Al techniques for non-invasive neonatal
jaundice detection, as well as studies that were peer-reviewed. Exclu-
sions included studies focused on adult jaundice detection, diagnosing
jaundice invasively, used non-Al techniques, studies with no abstract
or full paper, published before January 2014, and not published in
English. A total number of thirty-three (33) research articles satisfied
the inclusion criteria as outlined in Fig. 3 by following the PRISMA
guideline of [28]. The details of the articles considered for this review
are shown in Table 3.

2.3. Information extraction

Information from the included studies has been extracted through a
clear, reliable, and comprehensive process. This process systematically
undertaken ensures that relevant pieces of information from the studies
have been assessed for eligibility thereby enabling transparency and
replicability in our review process. Information extracted include the
study identification (authors, title, publication year, publisher), spe-
cific machine learning or deep learning techniques used, data type,
main findings (results), performance metric adopted, challenges en-
countered, data management in terms of confidentiality and security of
data etc. Table 4 provides a summary of the different methodological
approaches adopted in the previous studies. The studies are divided
into three categories; Machine learning-based techniques used in 17
studies, Deep learning-based techniques adopted in 7 studies and En-
semble methods and hybrid models used in 9 studies. Fig. 4 highlights
the frequency of articles based on their publication year. It shows
how many studies on non-invasive neonatal jaundice detection were
published each year between 2014 and 2024 period been considered
in this study. Fig. 5 illustrates the percentage distribution of studies
by the category of technique used in previous non-invasive neonatal
jaundice detection research works. The chart visually represents how
many studies employed each category, highlighting the predominant
use of Machine learning-based techniques over the other Al techniques
in this research field.

3. Data acquisition

In the field of neonatal jaundice detection, understanding and cor-
rectly acquiring the right data is fundamental. In this section, the
technologies employed in the process of acquisition of neonatal jaun-
dice data is introduced, highlighting their advantages and limitations.
In addition, emphasis was laid on the existing datasets that were
obtained by using these technologies, and insights on the present
state-of-the-art datasets are provided as a conclusion.

3.1. Technologies

In non-invasive neonatal jaundice detection research, several dig-
ital photography technology-based techniques have been deployed to
collect image data. The tools as depicted in Fig. 6 include optical
spectroscopic devices (e.g., SAMIRA) [16], smartphone applications
(Billicam) [13], and reflectance photometers [15]. The technology
adopted by these previous research typically focus on capturing images
of the neonate’s skin, which can then be analyzed using Al-based
techniques and methodologies to determine bilirubin levels and assess
jaundice severity. The most common tools used by previous research
have been highlighted.
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Table 1
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Approach for Keywords Search.

General Item

Keywords

Neonatal Jaundice

Non-invasive AND (Neonatal OR Neonates) AND (Detection OR Diagnosis OR
Identification) AND (Jaundice OR Bilirubin)

Non-invasive Detection

(Neonate OR Neonatal) AND (Jaundice OR Bilirubin) AND (Diagnosis OR Identification)

Al approaches

(Machine Learning OR Deep Learning) AND (Neonatal OR Neonates) AND (Detection OR
Diagnosis OR Identification)

Table 2
Algorithm for study search strategy.

Algorithm Search Strategy

1: procedure SearchStrategy

2: initialize electronic databases: IEEE Xplore, PubMed, ACM Digital Library,
Scopus, Google Scholar, Science Direct, Academic Search and Web of Science

3: set search time frame: from January, 2014 to August, 2024

4: define keywords: “non-invasive”, “jaundice diagnosis”, “neonates”, “detection”,
”machine learning“ and ”deep learning"

5: adopt PRISMA guideline for conducting systematic reviews

6: implement database search using defined keywords

7: retrieve and categorize relevant publications

8: assess search results for inclusion based on review criteria (original research
article, focused on non-invasive jaundice diagnosis, involving neonates, published
in English, between January, 2014 to August, 2024.

9: end procedure

This  process  involves
finding relevant research by
means of database
scarches, citations from
literature reviews and other

Screen Titles
and Abstract

Evaluate both the titles and
abstracts  of  identified
literatures to ensure their

The full text of studies

Studies

Full text of the chosen studies "
selection

is carefully evaluated in line
with the predefined criteria to

that have been considered
to be suitable are acquired
by the reviewers

criteria

that meet

selected as part of the

sources eligibility under  stated decide their inclusion in the revéew literature for  the
Identify the inclusion criteria Acquire Full review process study
Studies Text Choose Study
Fig. 2. Study selection process.
| Identification of studies via databases and registers J [ Identification of new studies via other methods
) )
Records removed before screening: 5 S )

S Duplicate records removed (n = 9) Records identified from:

'ﬁ Records identified from Records marked as ineligible by Websites (n = 10)

= Databases (n = 208) > automation tools (n = 0) Organisations (n = 0)

= Registers (n = 0) Records removed for other reasons Citation searching (n = 18)

[} (n=101)

=
-

Records screened Records excluded
(n=98) “l (n=61)
Reports sought for retrieval Reports not retrieved Reports sought for retrieval Reports not retrieved

2 (n=37) (n=4) (n=28) (n=6)

: | l

w

Reports assessed for eligibility N Reports excluded: Reports assessed for eligibility Reports excluded:
(n=33) Reason1(n=2) n= —¥| Reason 1(n=11)
Reason 2 (n=9)

_J
—

7 Studies included in review

-] =

% Reports of new included studies

£ (n=2)

Fig. 3. Flow diagram adopted from the PRISMA guideline of [28] for the selection process of the 33 research articles based on the inclusion criteria.
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Table 3
Details of selected studies organized chronologically, from the most recent to the least
recent.

S/N Study Publication year Publisher

1. [29] 2024 Elsevier

2. [30] 2024 Foundation of CS Inc.
3. [3] 2023 Elsevier

4. [9] 2023 Taylor and Francis
5. [16] 2023 Springer

6. [23] 2023 IEEE

7. [31] 2023 MTU

8. [32] 2022 Nova Science

9. [33] 2022 Atlantis Press

10. [34] 2022 Innovative Research
11. [35] 2022 PLOS

12. [10] 2021 IOP Publishing

13. [17] 2021 MDPI

14. [24] 2021 Springer

15. [36] 2021 TUBITAK

16. [37] 2021 MDPI

17. [38] 2021 MDPI

18. [39] 2021 BioMed Central Ltd.
19. [40] 2021 IOP Publishing

20. [81 2020 Springer

21. [14] 2020 IAEME Publication
22. [22] 2020 Wiley-Blackwell
23. [41] 2020 PLOS

24, [4] 2019 Science

25. [15] 2019 Optica

26. [42] 2019 Springer

27. [43] 2019 IEEE

28. [44] 2019 TUMS

29. [45] 2018 IEEE

30. [46] 2018 1JCP

31. [13] 2017 AAP

32. [47] 2016 1JCSIS

33. [48] 2016 Springer

Number of publications per year from selected studies
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Fig. 4. Frequency of article based on publication year for selected studies.
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Fig. 5. Distribution of studies based on the category of Al technique used.

3.1.1. Digital cameras and smartphones

High-Resolution digital cameras are often used by researchers due
to its affordability, ease of use and flexibility [15,17,37]. The digital
cameras easily capture detailed images of the skin as these cameras
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are usually embedded with features like controlled lighting and macro
lenses to enhance image quality. Modern smartphones equipped with
high-resolution cameras are also often used for image capture [22,32,
41]. They offer convenience and portability, making them suitable for
use in clinical settings.

3.1.2. Hyper-spectral imaging systems

Hyper-spectral imaging (HSI) captures a broad spectrum of light,
including wavelengths beyond the visible range, for each pixel in an
image. This detailed spectral data allows for precise measurement of
skin reflectance at different wavelengths [8]. HSI improves the accu-
racy of bilirubin estimation by identifying the distinct spectral signature
of bilirubin, reducing interference from other factors like skin pigmen-
tation and lighting [16]. By providing comprehensive spectral profiles,
HSI enhances sensitivity to bilirubin and improves diagnostic accuracy.
This technology offers a more reliable and non-invasive alternative to
traditional methods for detecting neonatal jaundice.

3.1.3. Photometric devices

Photometric devices are usually smartphone-based application that
uses the phone’s camera in conjunction with a color calibration card
to estimate bilirubin levels from images of the baby’s skin. Examples
of such devices is the Bilicam [19]. Table 5 presents the technology
that has been adopted by the previous studies in acquiring data non-
invasively for neonatal jaundice detection. As documented, 16 studies
adopted the use of a smart phone camera with at least 8 MP and
1080 x 1920 resolution. 7 studies used a high definition digital camera
ranging equipped with a macro lens, 2 studies used photometric devices
named BilliCam and PiCam, 2 studies adopted Hyper-spectral imaging
devices, 2 study used the MRI scanner and 1 study used the transducer
to acquire ultrasound images of full-term babies.

3.2. Datasets

Non-invasive neonatal jaundice detection using Al techniques can
be deployed using images from different parts of the body, includ-
ing the scelera of the eyes, the face, chest, hands, palms, and even
the thumbnail [49]. A few studies have successfully conducted non-
invasive neonatal jaundice detection using clinical data; however, there
is unfortunately limited literature focused on this data type as shown
in Fig. 7, which highlights that image data has been predominantly
used in previous research. This raises the question of whether it is
more relevant to rely solely on image data, clinical health data, or
a multimodal approach that integrates both to enhance diagnostic
accuracy and robustness.

One major limitation of medical data is its limited availability and
restricted access, hence, to the best of our knowledge, there is only one
standard publicly available curated dataset for non-invasive jaundice
diagnosis in neonates [29], this dataset consist of 767 neonates sternum
skin images for both jaundiced and healthy babies. From the findings
of this review, previous studies were conducted by sourcing for data
from hospitals for the purpose of the research.

Due to the sensitive nature of these data, strict data management
and confidentiality protocols were adopted, resulting in restricted ac-
cess to research data in almost all the previous studies covered by
this review. For instance, in studies that utilized eyes images such
as [3,15,17,41] as well as studies that used face images, like those
by [9,10,14,17,23,30,32,37,44,45,47]. Other dataset used in previous
studies consisted of skin images as found in the studies of [13,22,30,
31,33,34,36-38,40,46,48]. The study by [8,16,43] used thumbnail as
inputs, [24,39] used MRI images in their study while [38] adopted the
use of ultrasonic images.
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Table 4
Categorization of studies based on techniques used.
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Category Number of Study Technique Adopted

Category 1 17 Machine learning-based techniques

Category 2 7 Deep learning-based techniques

Category 3 9 Ensemble methods, Transfer learning and Hybrid models

Table 5
Technology deployed by the selected studies for data acquisition.

Data Capturing Technology Studies

Cost and Accessibility

Smart Phone Camera [3,13,17,22,29-

34,40,41,44,46-48]

Affordable cost and easy accessibility.

HD Digital Camera

[9,10,29,34,37,40,45]

Relatively affordable and easy to access.

Photometric Device [14,15] Average cost and accessibility.
Hyper-spectral Imaging Device [8,16] High cost and not easily accessible.
MRI Scanner [24,39] Very high cost and low accessibility
Transducer [35] High cost and low accessibility.

SAMSUNG

HD Digital Camera Smart Phone Camera

@ ®)

Photometric device - BlliCam

Spectral Imaging System
© (d)

Fig. 6. (a) HD Digital Camera [15]; (b) Smart Phone Camera [31,48]; (c) Photometric Devices [13]; Spectral Imaging System [16].

Clinical data
6.1%

Image data
93.9%

Fig. 7. Input data type used by previous studies detailing that 93.9% representing 31
studies used image data and 6.1% representing 2 studies that used clinical data.

3.3. Protocol for data collection

Based on the studies used in this review of non-invasive neonatal
jaundice detection, the experimental setup involved the selection of the
subjects for inclusion based on some criteria as well as collecting data
from the selected subjects under specific and detailed conditions for
data collection. As presented in Table 6, each study has collected their
data based on specific subject inclusion criteria aimed at attaining the
objectives of the study.

The Normal Jaundice Newborns (NJN) dataset, consisting of 767
infant skin images, was acquired at the NICU ward in Al-Elwiya Mater-
nity Teaching Hospital in Baghdad, Iraq, as part of the study conducted
by [29]. This consist of 567 healthy and 200 jaundiced images and the
dataset is publicly available.

A face image dataset, consisting of 145 images (50 normal and 95
abnormal) of infants aged from one day to several weeks, was curated
from Mosul hospitals (Alkhansaa Hospital and Ibn Alatheer Hospital) in
the study by [32]. [17] collected a dataset consisting of eye images of
a 100 neonates from King Khalid University Hospital (KKUH), Riyadh,
Saudi Arabia. [33] used the chest skin images of 31 newborn infants
with hyperbilirubinemia from the local district hospital. In the study
of [22], chest skin images of 302 full-term, infants at up to 15 days of
age were collected from 2 hospitals; St Olav Hospital, Trondheim and
Akershus University Hospital, Lgrenskog. [48] curated a chest images
dataset of 40 jaundiced and 40 healthy newborns chosen from a patient
group between 24 and 48 h after birth. [16] used thumb nail images
from 3427 neonates with gestational age from 28 to 40 weeks for their
study. [14] used an unspecified number of chest images of infants in
their study.

In this study, [4] obtained vital health data covering 23 variables
from 23 infants at a hospital in south-western Nigeria. [42] collected
2 datasets of neonatal data of neonates admitted to the University
Children’s Hospital Basel (UKBB) from 2015 to 2016 and records of
neonates admitted to UKBB in 2017 within their first week of life
and with a birth weight of at least 2500 grams. [34] curated chest
skin image data from 178 infants from the newborn department at the
Songklanagarind Hospital, Thailand. [43] collected thumbnail images
as input data for their study from 1033 neonates from postnatal,
neonatal intensive care unit and sick newborn care unit of Nil Ratan
Sircar Medical College and Hospital, Kolkata. Also, [8] used thumbnail
images of 1,968 neonates with gestational ages ranging from 28 to 40
weeks.

The study undertaken by [36] used skin images of 196 newborn
babies, separated as control and case groups. [37] collected face and
skin images from 20 infants, at the Ibn Al-Atheer teaching hospital
of pediatrics in Mosul, Iraq. Ultrasound images of 180 patients from
Taichung Veterans General Hospital was collected by [35] in their study
while [38] acquired 228 chest images from 38 jaundiced neonates from
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Fig. 8. Frequency of input data used by previous studies depicting that the skin image
was the most frequently used input data by previous studies.

Chiayi Christian Hospital. A dataset of infant face images was obtained
from University Hospital, University of Miyazaki by [45]. In the study
by [9], 20 face images of 3D created babies with varying skin tones was
used as input data. [15,41] recruited the face images of 87 newborn
babies from the Neonatal Unit of UCL Hospital. [23] used face images
of neonates from a number of children’s hospitals in Chennai, Tamil
Nadu, India.

Face images from 113 neonates who were at least 9 days old and
weighed between 2.3 kg and 3.7 kg was acquired by [44]. [40] in
their study, acquired thirty (30) samples of pictures of infant skin im-
ages. [47] used an unspecified number of face images in their research
study. [3] annotated dataset of 201 eye images of 139 healthy neonates
and 62 jaundiced neonates. [46] enrolled 35 newborn babies who were
born at a hospital in Chennai and acquired their skin images. [13]
obtained six BiliCam images each for 580 newborns with neonate age
range of 12 to 163 h. [24] collected data from 150 male neonates, 75
with acute bilirubin encephalopathy (ABE) and 75 without ABE, who
underwent MRI scans at post-menstrual age of 37-41 weeks. In the
work of [39], 190 T1-weighted MRI image slices were collected from
79 neonates evenly distributed between ABE an d non-ABE cases. [31]
acquired 511 images consisting of 100 images downloaded from the
internet and 411 images acquired from Al-Elwiya Maternity Teaching
Hospital, Al Rusafa, Baghdad. [30] in their study, used the NJN dataset
for training the models while a dataset containing 19 faces images ob-
tained from a GitHub repository was used for model inference testing.
Fig. 8 highlights the frequency of input data as they were used in the
previous studies.

Collecting data from the selected subjects in the previous studies
was done under specific and detailed conditions. This is necessary in
order to acquire high quality data needed for the analysis. Some studies
observed specific criteria that are tailored to their research needs
in their data acquisition process. For instance, [17,22,46] excluded
subjects that were on phototherapy, had a birth weight less than 2 kg
or had signs of diseases other than jaundice. [10,36,48] ensured the
experiments were conducted in a controlled clinical environment to
minimize external variables affecting the results. This includes con-
trolled lighting and consistent ambient conditions to ensure accurate
readings from the data. Images were captured with specialized devices
such as HD camera and smartphones with high-quality cameras [15,
33,34,44]. The devices are calibrated against standard references be-
fore use in the studies of [22,48]. In the studies of [17,31], detailed
protocols for data collection were given, including the specific areas of
the body where measurements are taken, the distance, and the angle
of image capture to ensure consistency and reliability . Collected data
were validated against traditional methods like serum bilirubin tests to
assess the accuracy and reliability of the non-invasive methods.

The general process of data acquisition across the previous studies
involved obtaining verbal and written consents from the parents of
the neonates and obtaining ethical approval from the medical facility
where the data acquisition takes place [13,22,46,48]. In this review, 10
studies in addition to the ethical approval, also adhered to the World
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Year wise Al approach categories in previous studies
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Fig. 9. Year-wise distribution of previous studies by the AI approaches used, high-
lighting that 2019 had the highest number of studies using ML, 2021 has the highest
number of ensemble approach studies and 2022 had the highest number of studies
conducted with deep learning.

Medical Association’s Declaration of Helsinki guidelines for conducting
research on human subjects [50]. Table 6 documents dataset features
such as the size of dataset, the body part image used (eyes, face, chest
skin, thumbnail images etc.).

4. Performance metrics and Al approaches

A wide range of techniques and evaluation criteria are used to
develop, implement, and assess artificial intelligence systems. These ap-
proaches include machine learning algorithms and neural networks [3,
9,23,32,45] while metrics includes accuracy, precision, recall, and F1-
score [13,24,31,39]. Fig. 9 shows the distribution of previous studies
by the AI approach adopted and their year of publication.

4.1. Performance measurement metrics

Previous studies used metrics such as accuracy, sensitivity, speci-
ficity, precision, and area under the receiver operating characteristic
(ROC) curve (AUC). According to [17,24], these metrics are crucial in
determining the reliability and clinical utility of non-invasive neonatal
jaundice diagnostic tools and techniques, ensuring that they provide
accurate, dependable, and timely identification of neonatal jaundice.
By examining these performance measures, the study aims to provide a
comprehensive assessment of current non-invasive techniques and their
potential to replace or complement traditional invasive methods.

4.1.1. Accuracy

Accuracy refers to the overall correctness of a diagnostic method
in identifying true cases of jaundice among newborns. It measures
the proportion of true results (both true positives and true negatives)
among the total number of cases examined [45]. [4] in their study,
computed accuracy as shown in Eq. (1).

TP+TN X100% 1)
TP+ FP+FN+TN

Studies by [10,13] reported that high accuracy indicates that the diag-
nostic tool is effective in correctly identifying both jaundiced and non-
jaundiced neonates, thereby minimizing misdiagnoses. Accuracy is a
critical metric because it reflects the overall reliability and performance
of the diagnostic method in clinical settings [36].

Accuracy =

t.me/neonatology


neonatology.bsky.social
https://t.me/neonatology

F.O. Salami et al.

Table 6
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Dataset used in previous studies detailing dataset references, description, modality, dataset accessibility status and the number of subjects.

Study

Dataset description

Modality

Public

Total no. of subjects

[3]

Annotated dataset of 201 eye images, 139 healthy neonates
and 62 jaundiced neonates

Eye image

No

201

[4]

Vital health data covering 23 variables from 23 infants at
a hospital in south-western Nigeria

Clinical data

No

23

(81

1,968 neonates with gestational ages ranging from 28 to
40 weeks

Thumbnail image

No

1968

[91

Created 20 images of 3D babies with varying skin tones

Face image

20

[10]

Images of 112 infants with at most 30 weeks gestational
age from the Central Teaching Hospital of Pediatric, Bagh-
dad, Iraq

Face image

12

[13]

Six BiliCam images were obtained each for 580 newborns
with an age range of 12 to 163 h. Other features collected
are ethnicity and race

Chest skin image

580

[14]

An image dataset with two class labeled as Jaundice and
Non-Jaundice

Chest skin image

Not given

[15]

Data from 87 neonates were curated in the outpatient clinic
of the Neonatal Unit of UCL Hospital

Eyes image

87

[16]

3689 neonates with gestational age from 28 to 40 weeks

Thumbnail image

3689

[17]

Dataset of a 100 neonates acquired from King Khalid Uni-
versity Hospital (KKUH), Riyadh, Saudi Arabia. Gestation
age between 35 and 42 weeks, 62 male and 38 female
newborns, with 67% healthy and 33% jaundiced.

Eye image and face image

100

[22]

302 full-term, healthy babies born at 37 weeks of gesta-
tional age or more and of normal weight of at least 2500 g
and up to 15 days old from 2 hospitals

Chest skin image

No

302

[23]

Neonatal photos from a number of children’s hospitals in
Chennai, Tamil Nadu, India

Face image

Not given

[24]

Data collected from 150 HB neonates, 75 with ABE and 75
without ABE, who underwent MRI scans at postmenstrual
age of 37-41 weeks, neonates were all male, weighed
between 2.83 - 3.81 kg

MRI images

No

150

[29]

Normal Jaundice Newborns (NJN) dataset, captured at
NICU ward in Al-Elwiya Maternity Teaching Hospital, Al
Rusafa, Baghdad, Iraq. The dataset comprises of 767 infant
images

Skin images

767

[30]

Normal Jaundice Newborns (NJN) dataset, captured at
NICU ward in Al-Elwiya Maternity Teaching Hospital, Al
Rusafa, Baghdad, Iraq comprising 767 infant images and a
second dataset containing 19 face images obtained from a
GitHub repository

Face and Chest skin image

779

[31]

511 images consisting of 100 images downloaded from the
internet and 411 images acquired from Al-Elwiya Maternity
Teaching Hospital, Al Rusafa, Baghdad

Chest skin image

511

[32]

Newborn image dataset of 145 images (50 normal and 95
abnormal) between the ages of one day and several weeks.
Aggregated from Alkhansaa hospital and Ibn Alatheer hos-
pital in Mosul

Face image

145

[33]

31 newborn infants with hyperbilirubinemia who were
hospitalized in the local district hospital

Chest skin image

No

31

[34]

Data from 178 newborns from the Songklanagarind Hospi-
tal’s newborn department, Thailand

Chest skin image

No

178

[35]

Ultrasound images of 180 patients from Taichung Veterans
General Hospital

Ultrasound Images

180

[36]

196 newborn babies, separated as control and case groups

Skin image

196

[37]

Data set consisting of 20 infants, who are at least 48 h old
and weighing 2500 g or more from Ibn Al-Atheer teaching
hospital of pediatrics in Mosul, Iraq.

Face image and skin image

20

[38]

38 jaundiced neonates with 228 images at different color
temperature from Chiayi Christian Hospital

Chest skin image

No

38

[39]

79 neonates diagnosed with hyperbilirubinemia (HB), in-
cluding 47 with acute bilirubin encephalopathy (ABE) and
32 without ABE. A total of 190 slices (approximately 2-3
slices per patient)

MRI images

No

79

[40]

Thirty (30) samples of pictures of infant skin

Skin image

30
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Table 6 (continued).
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Study Dataset description

Modality

Public Total no. of subjects

[41] Eighty-seven newborn babies from the Neonatal Unit of

UCL Hospital

Eye image

Yes (Anonymized) 87

[42] Dataset 1: Data of neonates admitted to the University
Children’s Hospital Basel (UKBB) throughout their first
week of life in 2015 and 2016, respectively. Dataset 2:
Records of neonates admitted to UKBB in 2017 in the first

week of life and with gestational age more than 34 weeks

Clinical data

No Not given

[43] 1033 newborns data from Nil Ratan Sircar Medical College
and Hospital’s postnatal, neonatal intensive care unit and

sick newborn care unit, Kolkata

Thumbnail image

No 1033

[44] 113 neonate images, at least 9 days old, born less than 35

weeks’ gestation and weighed between 2.3 kg and 3.7 kg

Face image

No 113

[45] Dataset obtained from University Hospital, University of

Miyazaki

Face image

Not given

[46] 35 neonates delivered at a hospital in Chennai were en-
rolled, neonates mostly term born, less than 1 week old,
birth weight of 2500 grams or more from both male and

female neonates

Skin image

No 35

[47] Not stated

Face image

No Not given

[48] 40 jaundiced and 40 healthy newborns chosen from a

patient group between 24 and 48 h after birth

Chest skin image

80

4.1.2. Precision

Previous studies by [17,34] used precision to evaluate the perfor-
mance of their techniques. It measures how many of the neonates
identified as having jaundice actually have the condition. [31] reports
that a high precision indicates that the diagnostic tool has a low rate of
false positives, which means it is effective in correctly identifying jaun-
diced neonates without incorrectly labeling healthy ones as jaundiced.
As shown in Eq. (2), [31] reported the following formula to compute
precision.
P _ @
TP+ FP
[17] emphasized in their study that precision is important for ensur-
ing that treatment and further testing are only administered to those
who truly need it, thereby reducing unnecessary interventions and
associated costs.

Precision = X100%

4.1.3. Sensitivity

Sensitivity (also known as the true positive rate) refers to the ability
of a diagnostic technique to correctly identify neonates who have
jaundice. It measures the proportion of true positive cases (neonates
with jaundice) out of the total actual positive cases (all neonates who
truly have jaundice) [34]. High sensitivity indicates that the diagnostic
tool is effective in detecting most of the cases of jaundice, hence,
minimizing the risk of missing affected newborns. [44] in their study,
computed accuracy as shown in Eq. (3) as:

TP
TP+ FN
Sensitivity is crucial for ensuring early and accurate identification of
jaundice, as high sensitivity implies that even mild cases of jaundice
are detected early which is important for timely intervention and
treatment [23].

X100% 3

Sensitivity =

4.1.4. Specificity

Specificity (also known as the true negative rate) refers to the ability
of a diagnostic method to correctly identify neonates who do not have
jaundice [4]. As highlighted in Eq. (4), it measures the proportion of
true negative cases (neonates without jaundice) out of the total actual
negative cases (all neonates who truly do not have jaundice) [44].

TN
TN+ FP
According to [24], high specificity indicates that the diagnostic tool
is effective in correctly identifying non-jaundiced newborns, minimiz-
ing the risk of false positives. Specificity is important for avoiding
unnecessary treatment and anxiety for families of healthy newborns.

Specificity = X100% ()]

10

4.1.5. Area under the ROC curve (AUC)

The area under the receiver operating characteristic (ROC) curve,
(AUQ) is a performance measure that evaluates the overall diagnostic
ability of a test. The ROC curve plots the true positive rate (sensi-
tivity) against the false positive rate (1-specificity) at various thresh-
old settings. The AUC represents the probability that the diagnos-
tic method correctly distinguishes between a jaundiced and a non-
jaundiced neonate.[23] The AUC can be computed using the trape-
zoidal rule, as demonstrated in Eq. (5).

n—1
AUC = % Y (FPR(i) + FPR(i + 1)) - (TPR(i + 1) - TPR(i)) 5)
i=1
As reported by [24,42], a higher AUC value, closer to 1, indicates
a better-performing diagnostic tool, with values close to 0.5 suggest-
ing no diagnostic ability better than chance. An AUC of 1.0 denotes
perfect accuracy, meaning the test perfectly discriminates between
jaundiced and non-jaundiced newborns across all threshold levels [22].
The AUC is important for comparing different diagnostic methods and
for assessing their potential effectiveness in clinical practice.

4.2. State-of-the-art in machine learning-based neonatal jaundice diagnosis

Machine learning-based neonatal jaundice diagnosis leverages ad-
vanced algorithms and data analytics to enhance the accuracy and
efficiency of detecting jaundice in newborns. These cutting-edge tech-
niques utilize a range of inputs, including clinical data and images, to
provide timely diagnosis aimed at improved neonatal care. As depicted
in Table 4, category 1 consisted of seventeen previous studies, [4,8,
9,13,15,16,22,29,31,33,36,40,41,43,44,46,48] that adopted the use of
varying machine learning techniques and tools in diagnosis of jaundice
non-invasively.

A detailed overview of the studies in Category 1, including their
research focus, methodologies, proposed solutions, and significance
within the context of non-invasive neonatal jaundice detection, is pre-
sented in Table 7 of this research. These studies tackle several chal-
lenges including limited performance of existing jaundice detection
systems, jaundice severity level diagnosis, intrusive methods of jaun-
dice detection, lack of real time monitoring system and the need for
improved strategies to detect neonatal jaundice. To overcome these
challenges, solutions such as semantic masks detection, color map
transformation, image segmentation techniques for color balancing,
RGB color dispersion and threshold assessment, scleral chromaticity
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mapping to an SCB value were implemented using machine learn-
ing approaches such as random forest, support vector machine, K-
nearest neighbor and linear regression among others. Fig. 10 [51]
and Fig. 11 [52] illustrate the two most prevalent machine learning
techniques; k-nearest neighbor (KNN) and linear regression used in the
previous studies under review.

Findings from the studies highlights considerable advances in non-
invasive diagnosis of neonatal jaundice. They demonstrate great accu-
racy, better detection rates, and out-performed some of state-of-the-
art models. Furthermore, these works have present novel approaches
for detecting the severity level of jaundice in neonates. Take for in-
stance, [40] introduced the concept of Scleral Conjunctival Billrubin
(SCB), in comparison with Transcutaneous Bilirubin (TcB) where the
scleral chromaticity is mapped to an SCB value. [15] developed a
novel color metric known as “Jaundice Eye Color Index” (JECI) that
allows the yellowness of jaundiced sclerae to be quantified, [22] pro-
vided a billurubin level estimator from color calibrated smart phone
images, [36] addressed the need for providing mobile support system
to aid health care professionals remotely, an android-based efficient
jaundice screening tool was introduced by [44] while [9] focused on
skin color analysis using automatic ROI selection.

These research, which have proffered solutions to the challenges of
existing techniques and established other novel approaches have given
grounds for the availability of more efficient ways to diagnose neonatal
jaundice non-invasively. For instance study conducted by [31] achieved
an accuracy of 98.44%, [9] achieved an accuracy of 91.22%, [40]
achieved an accuracy of 90.0% and [48] had accuracy of 85%. In this
review, the most commonly used features are RGB values extracted
form images of infant skin [31], Hue, Saturation, and Intensity (HSI)
values derived from the RGB color space to better handle variations
in lighting, Colormap transformations and feature calculation extracted
from the important skin section [16,48], Region of Interest (ROI) [9],
and estimated bilirubin levels. Other features used are age of neonates,
birthweight and gestational age [4,44]. Studies conducted by [9,29,
48] adopted the use of multiple classifiers while other used single
classifiers. [13] used the 10-fold cross-validation on the study sample.
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4.3. State-of-the-art in deep learning-based neonatal jaundice diagnosis

Category 2 from Table 4 comprises of studies by [23,32,35,38,39,
45,471 that were conducted through the application of deep learning
techniques in non-invasive diagnosis of neo-natal jaundice. The primary
focus of these studies is to address the challenges associated with non-
invasive diagnosis of jaundice in neonates, and they have proposed
innovative deep learning-based solutions that leverage the strengths
of network flow analysis, feature engineering, classifier training and
optimization. These studies are especially relevant since they help
to advance the state-of-the-art in non-invasive jaundice detection in
neonates. The Deep Learning section in Table 8 presents insight into the
comprehensive findings and methodologies adopted in the Category 2
studies, hereby underscoring their essential contributions to the field.

As highlighted in Fig. 12 which depicts the CNN model [53], a
fore runner for deep learning models exploits the expansive amount
of information that is the driving force behind network flow data,
showcasing the extent to which it can encapsulate intricate patterns
within data to achieve the aim of non-invasively diagnosing jaundice.
As improved diagnostic performance ensures early jaundice detection
in neonates.

In essence, the studies conducted in Category 2, highlights the
importance of developing sophisticated techniques and tools for non-
invasive jaundice detection. [38] for instance, proposed a dynamic
threshold white balancing algorithm for effective jaundice diagno-
sis, [32] presented a sophisticated bilirubin monitoring system based on
Artificial Neural Networks (ANN) while a non-contact and non-invasive
approach for early detection was presented by [23,45] using spatial and
spectral domain structures based on graph neural network (SSGNN),
In [47], a system to categorize severity of jaundice by demarcation
of the yellowness region of the skin using color segmentation was
developed while [39] A stochastic gradient descent (SGD) optimizer
with momentum was used to achieve optimized classification. With
the results of studies in category 2 [23,35] showing a higher Area
under the ROC Curve (AUC) than the category 1 studies, this implies
that deep learning approaches outperform typical machine learning
methods in terms of improved diagnostic accuracy and better reliability
in differentiating between the classes being studied.

4.4. State-of-the-art in ensemble methods, transfer learning and hybrid
models

Ensemble learning techniques and hybrid models are becoming a
popular approach in enhancing the overall efficiency of jaundice non-
invasive diagnosis systems, it involves the consolidation of varying
individual models to create a synthesized model with greater precision
and strength as a whole. Hybrid models on the other hand combine
several integrate several machine learning algorithms, regularly incor-
porating conventional techniques with deep learning approaches, in
order to exploit their complimentary capabilities.

Studies by [3,10,14,17,24,30,34,37,42] make up the category 3
found in Table 4, these studies have contributed significantly to the
field of Non-invasive neonatal jaundice by being focused on overcom-
ing challenges such as early jaundice detection, jaundice severity de-
tection and identifying hyperbilirubinemia symptoms in neonates [17,
24]. The proposed solutions by the aforementioned studies include
adopting a range of approaches such as transfer learning, Least Ab-
solute Shrinkage and Selection Operator model, stacking and voting
classifiers, gradient boosting and adaptive boosting [42]. Results from
these studies display significant improvements in its application in early
detection of neonatal jaundice non-invasively. The significance of these
studies lies in their ability to improve the reliability and usability of
the proposed techniques in addressing key issues such as the early
detection of jaundice and the severity level estimation of jaundice
in neonates [10,37]. In the Ensemble, Transfer Learning and Hybrid
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Key findings of machine learning-based studies detailing the study references, study approach, goal, and the performance metrics adopted by

the studies.

Study Approach Goal Performance Metrics
[4] Deep learning classification and regression Developed a classification model for predict- 60.9(Acc)
with multi-layer perceptron (MLP) classifier ing neonatal jaundice severity dependent on
for varying number of epochs vital health records
[8] Positive predictive value, negative predictive =~ Higher accuracy in preterm infants and dark -
value and constructing Receiver Operating  skin babies and low birth weight babies
Characteristic (ROC) curves
[13] Image collection, Bland-Altman analysis, Confirming BiliCam as an effective, user- 76.4(Se) 100(Sp)
mean bias and limits of agreement for the  adaptable app for the outpatient treatment  85(AUC)
paired TcB and TSB measurements and management of jaundiced infants
[15] ROI selection, skin color analysis, extracting A simple, non-invasive GUI system for track- 91.20(Acc)
image features, and detection based on ma-  ing newborn jaundice
jority voting
[16] Descriptive statistical analysis, simple linear Developed a non-invasive point of care 95(Acc)
regression analysis, and the Bland and Alt-  device — Spectrum Assisted Medical Inof-
man method fensive Radiation Application (SAMIRA)
[22] Generated a corresponding bilirubin estimate =~ A neonatal jaundice screening tool that 100(Se) 69(Sp)
by comparing calibrated neonate images with  recorded high specificity in Caucasian new-
a large database of bilirubin pairs born infants
[29] Skin detection, ROI selection, skin color anal- A non-invasive system adopting the use of 99.39(Acc)
ysis and training classifiers with intensity = a USB webcam and an XGBoost machine
values learning technique
[31] Skin color analysis, image histograms, used A computer-assistive technologies to diag- 98.44(Acc) 97(Pr)
k-NN and SVR algorithms nose jaundice for different skin tones and
light conditions
[33] Image color intensity extraction using ImageJ ~ An easy to use method for neonatal hyper- -
software and correlated with hospital data for ~ bilirubinemia estimation
bilirubin concentration estimation
[36] Five-point body-part marker image analysis = An optical control system for detection of  92.5(Acc)
approach neonatal jaundice that can be deployed re-
motely
[40] Image complexion detection, RGB image pro-  Web-based digital image processing to detect ~ 90(Acc)
cessing and Euclidean distance measurement  jaundice cases based on bilirubin levels
[41] The scleral chromaticity mapping to a Scleral- A novel screen-as-illumination ambient sub- 100(Se) 42(Sp)
Conjunctival Bilirubin (SCB) value traction method to measure sclera chro- 85(AUC)
maticity
[43] Acquire and analyze optical signal and to Non-invasive technique, successfully detects 88(Se) 98(Sp) 83(AUC)
calculate the bilirubin value the bilirubin under various physiological
conditions
[44] Machine learning and regression-based tech- Smart phone-based estimation of bilirubin 68(Se) 92.3(Sp)
niques to analyze images pixel by pixel, levels in infants
estimate average RGB scores, convert images
to HSI parameters
[45] Color spaces in native RGB and CIE XYZ A predictive tool for the yellowness of the -
colors and Jaundice Eye Color Index (JECI) jaundiced scelera in relation to specific TSB
levels
[46] Biliscan application which utilized the smart- Mobile-based app with high correlation with -
phone’s camera and a color calibration card the actual TSB values of the neonates adapt-
able to users
[48] Pixel similarity and white balancing methods A non-invasive jaundice diagnostic system  85(Acc)

to obtain RGB and pixel values, feature ex-
traction

based on SVR and KNN

section of Table 8, a detailed overview of the studies classified as cate-
gory 3 is presented, outlining their focus, methodologies adopted, and
detailed findings. Transfer learning using a pre-trained VGC-16 model
for feature extraction was deployed in [3], with a focus on input data
mapping using non-linear features. [42] presented the LASSO model
applied on Random Forest and Ensemble technique. The mCADx mobile
computer aided diagnosis tool to identify neonatal hyperbilirubinemia
was presented by [34,37] proposed a color transformation and Otsu
thresholding technique to evaluate the B and Cb channels in neonatal
images while [3] engaged in detecting the severity level of jaundice by
augmenting images using cycleGAN.

An approach to training a deep convolutional neural network us-
ing images of unpaired dataset and Semantic Mask detection. [24]
deployed multimodal MRI data apparent diffusion coefficient (ADC)
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maps combined with deep learning techniques for jaundice severity
classification. In this study, a non-invasive method for detecting severe
neonatal jaundice based on the NJN dataset was presented by [30],
involving development of a system by improving the testing accuracy
utilizing several variants of the YOLO object detection model. To
improve the model’s performance on the inference dataset (a dataset
that is significantly different from the original dataset), the semantic
segmentation image approach was implemented. The study compares
the performance of custom CNN models and transfer learning models
such as Vision Transformer, MobileNet, and EfficientNet across key
metrics indicating that these techniques offer a cost-effective, acces-
sible solution for early jaundice detection, especially in low-resource
settings.
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Summary of Key Findings from Deep Learning-based Studies and Studies on Ensemble Methods, Transfer Learning, and Hybrid Models, highlighting Study References, Approaches,
Goals, and Performance Metrics.

Study

Approach

Goal

Performance metrics

Deep Learning-Based Studies

[9] Skin area extraction, face area detection, converting  Automatic detection system for neonatal jaundice by = —
RGB color values to YCbCr color space monitoring the changes in babies’ skin color
[23] Data pre-processing, segmentation, Processing with A novel framework based on graphical neural net- 96.5(Acc) 96.6(Se) 95(Pr) 97.2(AUC)
SSGNN works was developed
[32] Image augmentation, training on ResNet50 A Jaundice recognition system in newborn using deep 84.09(Acc)
learning
[35] Color temperature white balancing, image jaundice Reduce the impact of different color temperatures on -
value detection images in the preprocessing stage
[38] Use of ImageNet Large Scale Visual Recognition for A screening tool for identifying possible BA by hep-  90.56(Acc) 67.8(Se) 96.9(Sp) 85.08(Pr)
classifying Ultrasound images as BA or non-BA atobiliary ultrasound images 92.6(AUC)
[39] Use of ResNetl8 fine-tuned on T1 weighted MRI Advanced analytical methods to optimize T1 62.11(Acc) 78.95(Se) 45.26(Sp)
dataset and optimized using stochastic gradient de-  weighted images for diagnosing ABE in clinical = 59.58(Pr) 68.92(AUC)
scent (SGD) practice
[47] Smart phone-based image capturing, skin color seg- A non-invasive jaundice prediction system based on  93.0(Acc)
mentation yellow discoloration of skin
Ensemble, Transfer Learning and Hybrid Model Based Studies
[3] Image augmented using cycleGAN, ROI using Seman- Non-invasive early diagnosis of jaundice by analyzing 88.57(Acc)
tic Mask detection, color detection, scelera segmen-  eye images
tation using LabelMe
[10] Skin image analysis using a color-based screening  Efficient and cost-effective skin color analysis-based 100(Acc)
tool digital output transmission to a microcontroller  jaundice detection and classification system
circuit
[14] Input data mapping using non-linear function. Color  Error-limited model to detect Neonatal Jaundice 93.0(Acc)
card bilirubin classification based on the skin and
eye’s coloration
[17] Classification and feature extraction by transfer learn- Transfer learning techniques performed better with 86.83(Acc) 81.05(Se) 84.49(Pr)
ing with a pre-trained VGG-16 model skin attributes; standard machine learning models  82.12(F1) 81.05(AUC)
excelled with eye image features
[24] Multimodal MRI data, apparent diffusion coeffi- Demonstrated the potential of multimodal MRI with 93.0(Acc) 87(Se) 98(Sp)  98(Pr)
cient (ADC) maps, combined with deep learning = CNN models 92.0(F1) 99.0(AUC)
approaches to classify severity of jaundice(HB)
[30] Variants of the YOLO object detection model and Proposed approach has potential to serve as a cost 100 (Acc) 100(Se) 100(Pr) 100(F1)
semantic image segmentation on Transfer learning  effective alternative 100(AUC)
models including Vision transformer
[34] Analysis of symptoms of neonatal hyperbilirubinemia = The use of sophisticated digital image processing and  98.44(Acc) 79.85(Se) 98.54(Sp)
utilizing image processing and data mining tech-  data mining techniques for detecting the symptom of  74.25(Pr)
niques neonatal hyperbilirubinemia
[37] Apply color transformation and Otsu thresholding A highly efficient method for identifying jaundice at -
methods to determine the values of the B channel a TSB concentration of 14 mg/dL and above, with a
and Cb channel for the ROI in the RGB and YCbCr  detection time of 1 s
color spaces
[42] LASSO (Least Absolute Shrinkage and Selection Op-  An early phototherapy prediction computational  78(Se) 92(Sp) 95.20(AUC)

erator) model applied on random forest model, and
an ensemble model

model
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Table 9
Comparative overview for feature extraction in ML and DL approaches.
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Study/Feature Extraction/ Representation Strength

Limitation

Machine Learning

Multi-space color feature extraction with

colormap transformations [3,40,48] relevant to the analysis

Ability to capture diverse color characteristics

Increased computational load and time

Color channel mean extraction [9]

Detects jaundice with high sensitivity in mild cases

Lacks spatial information

RGB and YCrCb multi-color space models

Enhanced color analysis using intensity and

luminance/chrominance [10]

Increased complexity due to multiple color models

Color-based feature representation [13]
estimation

Focused feature extraction for enhanced bilirubin

Inaccuracies from calibration and skin tone
variations

Reflectance photometry-based spectral data
extraction [15]

High precision based on accurate spectral data

Increasing costs due to specialized instruments

Color calibrated images [22]
representation for analysis

Provides a consistent and reliable image

Inconsistencies in the calibration process can
introduce inaccuracies.

Lab color space transformation and OTSU
thresholding [31]

Enhances color feature distinction, OTSU
thresholding improves segmentation

Less reliable under different illumination
conditions due to varying lighting

Deep Learning

Graph-based spatial feature extraction using

SPAGNN and SPEGNN [23] data points

Effectively captures spatial dependencies between

Computationally intensive, requiring significant
resources

Multi-domain feature extraction technique
[35]

Improve diagnostic by capturing intricate details

it may be computationally expensive

Color-space transformation and statistical
feature extraction [47]

Effectively detects color changes and variability

Sensitive to lighting and skin tone variations

The solutions proffered in this category of research has highlighted
the importance of developing robust non-invasive neonatal jaundice
detection systems that can be assistive in early detection of jaundice
and in estimating the severity level of jaundice in the neonates.

4.5. Comparison of ML and DL approaches

This section critically evaluates the efficacy and applicability of
machine learning (ML) and deep learning (DL) methodologies in di-
agnosing neonatal jaundice non-invasively. This section explores how
ML algorithms, which traditionally rely on feature engineering and
statistical methods, compare with DL models that leverage complex
neural networks for feature extraction and classification. It discusses
the strengths and limitations of each approach concerning factors such
as accuracy, interpretability, scalability, and data requirements. By
examining these methodologies side by side, the study aims to provide
insights into which approach may offer superior performance in clin-
ical settings, thereby guiding future research directions and practical
implementations in the field of neonatal care. Critically evaluates the
efficacy and applicability of machine learning (ML) and deep learning
(DL) methodologies in diagnosing neonatal jaundice non-invasively.

Feature Extraction and Representation. Feature extraction in
machine learning is crucial for developing accurate diagnostic tools for
neonatal jaundice. It involves transforming raw data into structured for-
mats, identifying relevant clinical data, and using manually engineered
features for input into models [33]. From reviewed studies, the type of
features extracted for detecting neonatal jaundice includes color inten-
sity of images [9] that help to detect jaundice even in very mild cases,
RGB pixel values images [40,48] which enhances the early detection
of jaundice, spectral data based on reflectance photometry [15], HSI
parameters [44] that aid identification of neonates that require blood
sample, color calibrated images [22] to identify severe jaundice with
high intensity. In other studies, [31] achieved skin detection using the
LAB color space transformation and the OTSU thresholding [10] for ROI
selection, RGB and YCrCb color models was applied to the resulting
skin image for skin color analysis. [3] conducted ROI segmentation
with DeepLAB and color detection with delta E Distance metric in LAB
space. To extract the RGB directly from the color filter array output
data, [13] applied ROI and sensor Bayer pattern. Other image features
that can be explored are alternative color spaces such as HSV and CMYK
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color spaces, biochemical markers like skin temperature, texture and
structural features such as wavelet transform and Gabor filters.

Deep learning (DL) models, like CNNs and RNNs, learn hierarchical
representations of input data, enhancing performance in non-invasive
neonatal jaundice diagnosis by processing complex, non-linear relation-
ships. In the deep learning approaches, [47] quantified yellowness of
the facial skin by analyzing morphological changes in native RGB and
CIE XYZ colors.

Study by [35] extracted hierarchical features from raw ultrasound
images, focusing on both spatial and spectral domains. These feature
extraction techniques help in capturing intricate patterns and features
within images, improving the diagnostic accuracy. [23] extracted spa-
tial and spectral domain facts from face and sclera images using the
novel spatial and spectral graph neural network (SSGNN) model, that
integrates spatial and spectral data from face and sclera images to
enhance feature extraction. The use of SSGNN allows for a comprehen-
sive analysis of both spatial and spectral information, capturing more
detailed skin reflectance properties. Table 9 highlights the strengths
and limitations of the feature extraction and representation approaches
found in the machine learning and deep learning studies.

Model Complexity and Interpretability. Traditional ML tech-
niques, which often rely on handcrafted features, can achieve good
accuracy and precision but may struggle with complex patterns in the
data because their performance depends on the quality and relevance of
the features extracted manually. DL models, particularly Convolutional
Neural Networks (CNNs), excel at extracting hierarchical features from
raw data, capturing intricate patterns and details. This results in higher
accuracy and precision in detecting neonatal jaundice, even in low
severity cases. DL models can learn complex representations, making
them more effective in differentiating between different severity levels
of jaundice. ML models may require extensive pre-processing and
feature engineering to balance the quality and variability of the input
features, such as different lighting conditions, skin tones, and other
variables; however, ML models generally require less computational
power compared to DL models. They run efficiently on standard CPUs
and do not require specialized hardware like GPUs. DL models are
more robust to variations in input data due to their ability to learn
from large, diverse datasets. They can automatically adjust to different
lighting conditions, skin tones, and other factors, providing more
accurate jaundice diagnosis; however, DL models require significant
computational resources. Training these models necessitates powerful
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Performance metrics across the three categories of Al techniques
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Fig. 13. Performance metrics used across the three Al techniques, including accuracy, sensitivity, specificity, precision and AUC. The top and bottom of the bars indicate the

highest and lowest value achieved by each technique respectively.

GPUs or specialized hardware (like TPUs), as well as large amounts of
memory and storage. In environments with limited access to resources,
ML models are more suitable due to their lower computational and data
requirements; they can be deployed on standard hardware and are more
accessible in settings with constrained budgets. The high computational
cost and the need for large datasets can be inhibiting factors in the
adoption of DL models, especially in resource-constrained regions such
as developing countries. The complexity of the models used in neonatal
jaundice detection has a significant impact on both their performance
and the resources required. Machine learning models offer a more
accessible solution with lower computational and data demands but
may not match the accuracy and robustness of deep learning models.
Deep learning models, though they require substantial computational
resources and large datasets, provide superior performance in early
detection and higher accuracy in jaundice diagnosis by capturing
intricate patterns in the data.

Performance Comparison. Comparing the performance metrics of
machine learning (ML) and deep learning (DL) approaches is crucial for
evaluating their effectiveness. Key metrics include accuracy, sensitivity,
specificity, and area under the ROC curve (AUC). Accuracy of ML
models is often high when suitable features are manually selected and
engineered [33]. However, the performance may stagnate as these
models heavily depend on the quality of input features. DL models tend
to achieve higher accuracy by automatically learning complex patterns
from raw data. This capability allows them to outperform ML models,
especially when large datasets are available [23,32].

As presented in Fig. 13, ML models have good sensitivity [13], but
their sensitivity depends on the features used. They may miss subtle
jaundice patterns, resulting in lower sensitivity [44]. Deep learning
models, on the other hand, have higher sensitivity due to their ability
to capture complex relationships in data [23]. This is particularly
useful in detecting jaundice where slight variations in skin color or
texture can be critical [35]. ML models achieve high specificity with
well-chosen features, but balancing sensitivity and specificity can be
challenging [42]. Deep learning models improve specificity by effec-
tively distinguishing between jaundiced and non-jaundiced neonates
thereby reducing the likelihood of false positives, this is seen in studies
by [23,35] with specificity of 96.9% and 95% respectively. ML models
achieve high AUC with optimized feature selection and tuning, such as
seen by [22] obtaining AUC of 92.5%and, but may not improve sig-
nificantly with limited data capacity [41]. Deep learning models (DL)
generally achieve higher AUC values, especially with larger datasets,
indicating better diagnostic performance like in the studies of [23,35]
achieving AUC of 92.9% and 97.2% respectively.
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Transfer learning and ensemble models both showed significant im-
provements in the performance of neonatal jaundice detection. Transfer
learning leveraged pretrained models to effectively extract relevant
features, reducing the need for extensive data and computation specific
to the task as seen in study of [24] with accuracy of 93%, specificity of
98% and AUC of 99.1%, as well as the study of [17] with an accuracy
of 86.83% and AUC of 81.05%. Ensemble models enhanced robustness
and accuracy by combining predictions from multiple models, ensuring
reliable and consistent performance across different conditions such as
in the studies of [42] with a specificity of 92% and AUC of 95.2%
and [34] having accuracy of 98.44% and specificity of 98.54%. Both
approaches demonstrated their utility in improving diagnostic accuracy
and providing practical solutions for real-world applications.

The integration of diverse Al approaches and metrics demonstrates
significant advancements in the field of neonatal jaundice diagnosis.
Machine learning and deep learning techniques offer promising alter-
natives to traditional methods, with deep learning models showing
superior performance due to their ability to handle complex patterns
in raw data. The effectiveness of these Al systems is primarily assessed
through key metrics such as accuracy, sensitivity, specificity, and AUC,
which are crucial for ensuring reliable and timely diagnosis. Future
research should focus on enhancing algorithmic robustness, developing
comprehensive datasets, and exploring novel diagnostic modalities to
further improve the efficacy and clinical adoption of these non-invasive
technologies.

5. Discussion and challenges

This section offers a thorough analysis of the insights derived from
our review, emphasizing on the methodologies employed for diagnosis
of neonatal jaundice non-invasively through the utilization of ML and
DL techniques. There are clear patterns which indicate to a preference
for deep learning approaches, especially for deep neural networks,
which are effective at extracting intricate details from unrefined data.
ML techniques like decision trees, random forests, and support vector
machines depicted high adaptability in handling heterogeneous feature
spaces.

Predictive performance is improved by leveraging the strengths
of individual ML or DL algorithms, which are fused through ensem-
ble techniques [42]. Different types of algorithms or data modalities
(such as combining image analysis with clinical data) are integrated
in hybrid models to achieve more comprehensive and accurate diag-
noses [14,24,34]. By amalgamating these approaches, there is promise
in achieving higher precision in detecting neonatal jaundice, thereby
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Table 10
Challenges in Machine Learning and Deep Learning non-invasive Diagnosis Techniques.
No. Challenge Description
1. Accessibility to standard Previous research datasets are typically collected for specific purposes
dataset and cannot be shared with other researchers due to ethical agreements
and privacy concerns of the subjects

2. Skin pigmentation Previous studies that used skin image found their results less accurate

dependent in diagnosing jaundice in darker skin pigmentation.

3. Class imbalance in dataset This is common in medical datasets, in this case, the number of
jaundiced subject will be far less than the number of healthy subject
which would led to biased diagnosis

4. Difficult data collection Data collection in hospitals, particularly from minors, is a tedious

process process requiring ethical approvals, consent forms, and potentially
non-disclosure agreements, amidst bureaucratic processes

5. Image Acquisition the illumination properties of the environment as well as the angle and

Environment distance of image capturing has an overall effect on the result of
diagnosis

6. Jaundice severity level In some studies, the technique applied has higher accuracy at specific

dependent correlated jaundice total serum bilirubin (TSB) measurement in the

subjects

enhancing diagnostic reliability and clinical decision-making [37]. De-
spite significant advancements in technology, several factors impede
the widespread adoption and effectiveness of non-invasive methods
from previous research works. Primary concerns as highlighted in
Table 10 includes the variability in skin pigmentation among neonates,
the need for an extensive and diverse datasets to train and validate
machine learning (ML) and deep learning (DL) models. Moreso, the
integration of these diagnostic tools into clinical practice faces regula-
tory constraints, ethical considerations, and the necessity for real-time,
reliable performance. Understanding these challenges is crucial for
developing more robust, accurate, and clinically viable non-invasive
diagnostic solutions for neonatal jaundice.

Dataset curated by most previous research were collected solely for
the purpose of that research, and in most cases cannot not be shared
with other researchers even when requested for [3,41]. This is due to
ethical agreements reached and privacy concerns of the subjects [36].
In studies like [31,48] that used the skin image input, their techniques
were more successful with lighter skin pigmentation [22,34]; hence,
the techniques were not highly accurate in carrying out diagnosis on
darker skin pigments. In [23], finding the yellowing signs in subjects
with dark skin at the early onset of jaundice was quite difficult. In most
medical datasets, class imbalance occurs in the curated dataset due to
instances of one class (in most cases, the healthy class) significantly out-
numbering the other class (typically the class with a medical condition
or disease) [15,41]. This issue leads to poor performance, especially
in machine learning techniques in predicting the minority class, and
standard performance metrics may generate misleading results [3,34].

The process of data collection for research is a tedious task on its
own, and it becomes even more challenging when it involves collecting
data from human subjects within the confines of a hospital environ-
ment [22,29]. In this case data is collected form minors hence, the need
to go through the hospital management’s bureaucratic processes to
obtain ethical approvals, obtaining consent forms and possibly signing
non-disclosure agreements with parents. The environment in which
image inputs are acquired plays a very significant role in the overall
performance of the technique, though there are sophisticated image
enhancing tools like in [34,48] that can be deployed to enhance the
quality of the image. Poor illumination of the environment [10,37],
variation in illumination, angle of capture, and distance of subject to
the acquisition tool are some of the reoccurring challenges [14].

In some studies, the technique applied has higher accuracy at spe-
cific correlated jaundice total serum bilirubin(TSB) measurement which
is obtained form the blood TSB test. [47] in their study developed a
technique that detected jaundice only up to 20mg/dL while [13] could
detect for TSB levels from 17 mg/dL and poor identification occurred
for subjects with TSB levels higher than 15 mg/dL in the research
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of [16]. This implies that, these techniques will not be able to detect
jaundice early on in the subject unless the hyperbilirubinemia builds up
to a certain severity level or will only be able to detect jaundice when
the hyperbilirubinemia level is very low.

The advancement and validation of non-invasive techniques for
neonatal jaundice diagnosis have significant implications for healthcare
policies and clinical practices. These studies underscore several key ar-
eas where changes and improvements can be implemented to enhance
neonatal care: Adopting the use of Al-based tools for non-invasive
bilirubin measurement in routine screening can help enhance early
detection of neonatal jaundice, as well as enable frequent and painless
monitoring of bilirubin levels in clinical practices. In this context,
increasing Al acceptability in medical diagnosis requires addressing
factors such as trust, system understanding, Al literacy, workflow in-
tegration, and socio-cultural concerns [54]. This highlights the need
for human-centered Al systems tailored to healthcare professionals’
expertise and norms, beyond just high algorithmic performance, to
facilitate smoother data collection and integration into clinical work-
flows [26]. This will accelerate provision of continuous assessment and
timely intervention without causing discomfort to the newborn. Non-
invasive diagnostic tools empower early jaundice diagnosis, this can
reduce reliance on serum bilirubin tests, lead to prompt treatment,
minimizing infection risks and reducing hospital stays for affected
infants and invariably reducing healthcare costs and resource burden.
Furthermore, Advances in non-invasive technology pave the way for
home monitoring of bilirubin levels, empowering parents to participate
actively in their child’s care and potentially reducing the need for re-
turning to the hospital frequently. In health care policies, non-invasive
jaundice screening and monitoring can be integrated into neonatal
care guidelines for a standardized approach. Policymakers can create
protocols mandating the use of validated devices. Healthcare profes-
sionals should be trained in using these tools, and educational programs
can ensure accurate use across healthcare settings. These tools are
especially beneficial in resource-limited settings, improving jaundice
diagnosis and management, promoting healthcare access equity.

Summarily, by leveraging machine learning and deep learning tech-
niques, non-invasive diagnosis of jaundice can present significant ad-
vantages;

1. We can analyze complex patterns in data that may not be
apparent to humans, leading to more accurate diagnoses.

2. Enhance diagnostic precision by effectively differentiating be-
tween bilirubin levels and other variables, including skin pig-
mentation and illumination conditions.

3. Train Machine learning and Deep learning algorithms to account
for individual variations, such as different skin tones and ages,
providing personalized diagnostic results.
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4. Improve the functionality of diagnostic devices such as im-
proving the performance of transcutaneous bilirubinometers by
integrating Machine learning and Deep learning algorithms into
diagnostic devices.

5. Utilize machine learning and deep learning techniques for the
processing of large volumes of data, which is essential for
population-wide screening programs and epidemiological stud-
ies.

6. We can leverage Machine learning and Deep learning to predict
the risk of developing severe jaundice based on early indicators,
enabling proactive management and preventive care.

7. Adoption of Machine learning and Deep learning to uncover new
insights from clinical data, contributing to the development of
new diagnostic criteria and treatment protocols.

Policies and practices are significantly impacted by studies on
non-invasive neonatal jaundice diagnosis, promoting an efficient, cost-
effective, and compassionate approach to managing neonatal jaundice,
with benefits for infants, parents, and healthcare systems. From the
comprehensive finding in our study, research needs in the field can
be in the following directions:

Improvement of model algorithms by developing advanced algo-
rithms for better feature extraction from clinical data, ensuring more
accurate representation of jaundice indicators. Directions can also come
from the creation of robust models by exploiting further the strengths
of techniques such as transfer learning and domain representation [17]
that can performs efficiently across data acquired from different ethnic
background and under varying clinical conditions [23,31]

Future research focus can be directed towards the use of novel
imaging technologies, such as hyperspectral imaging [8,16], to capture
more detailed and accurate information about skin pigmentation and
bilirubin levels. Real time monitoring of bilirubin levels by develop-
ment and validation of wearable sensors to enhance real time decision
making can also be explored [9].

Curating standard, diverse and annotated large scale datasets that
reflect various ethnicity, race and clinical scenarios to be used in
training and validating ML and DL models effectively. Data is the most
essential component in developing an efficient and robust ML or DL
diagnosis tool. Based on previous research, only one standard dataset
has been made publicly available for researchers in the field [17,23,29].
Research can be further promoted in the area of data sharing between
institutions to facilitate collaborative research and accelerate the de-
velopment of more accurate and generalizable diagnostic tools [3,34].
By addressing these areas, future research can overcome current limita-
tions and enhance the efficacy, reliability, and adoption of non-invasive
diagnostic technologies for neonatal jaundice.

6. Conclusion

In the study, the current landscape of non-invasive diagnostic tech-
nologies has been comprehensively examined, with significant advance-
ments and ongoing challenges in this field highlighted. While tradi-
tional invasive methods, using the total serum bilirubin (TSB) measure,
remain the gold standard [47] non-invasive approaches offer promising
alternatives that can enhance early detection and improve neonatal
care. Through critical analysis of both machine learning (ML) and deep
learning (DL) methodologies, their respective strengths and limitations
have been identified particularly in terms of accuracy, sensitivity,
specificity, and real-world clinical applicability. For instance, detect-
ing jaundice in neonates with high concentration in terms of Total
serum Bilirubin (TSB) have been a major challenge especially for ML-
based approaches. The review underscores the necessity for robust,
diverse datasets and emphasizes the potential of ensemble techniques
and hybrid models to further enhance diagnostic precision. Moreover,
the discussion on regulatory and ethical considerations, alongside the
practical challenges of clinical integration, points to the need for in-
terdisciplinary collaboration and continued innovation. Future research
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should focus on improving algorithmic robustness, exploring new diag-
nostic modalities, and fostering collaborative efforts to develop reliable,
scalable, and universally accessible non-invasive diagnostic tools for
neonatal jaundice.

A number of limitations that could have an impact on the find-
ings are acknowledged in this study; The insight acquired about the
successful application of non-invasive diagnostic techniques may not
be generalizable due to variations in the quality and sources of data
used in various studies. Making direct comparisons between different
ML and DL models used in different research is quite difficult due
to variations in the datasets, assessment criteria, and implementation
specifics. The rapid advancement in technology implies that certain
approaches explored might soon become obsolete, while more recent
ones might not be extensively explored. The review may not fully
address all regulatory and ethical issues related to the deployment of
non-invasive diagnostic tools, as these aspects often require specific
analysis that are tailored to specific settings.
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