Ductus Arterioso Persistente

Dr. Raúl Nachar Hidalgo Hospital Santiago Oriente Clínica Alemana de Santiago

Introducción

Problema frecuente en el prematuro
Inversamente proporcional a la edad gestacional

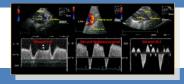
- Global 50 70%
- < 1000g 80%


DAP en la vida intrauterina desvía flujo hacia circulación sistémica

Hemodymamics and cardiology.2012 Ann Pediatr(Barc)2008;69(5):454-81

Introducción

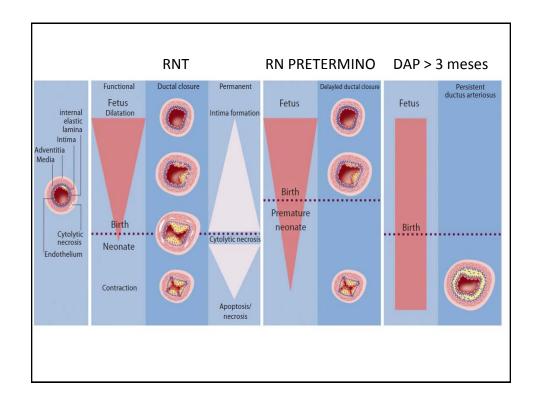
En circulación fetal:

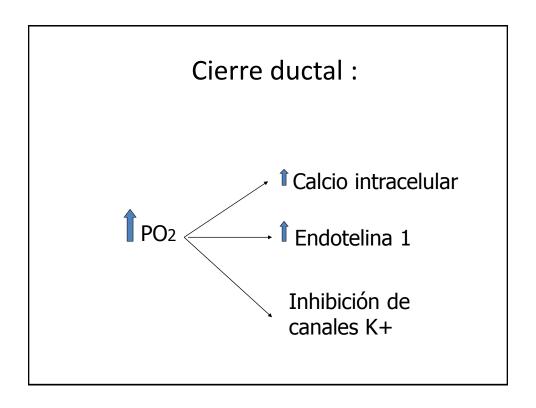

- 90% de GC va desde el Tronco de la AP a la Aorta descendente por el ductus
- Está favorecido por: RVP > RVS y el diámetro similar de Ductus y Aorta descendente.

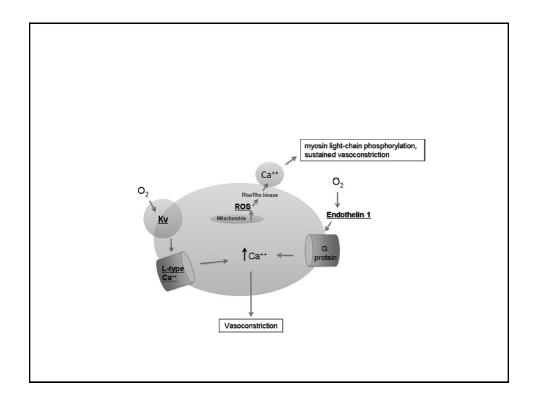
Introducción

Con el nacimiento disminuye la resistencia vascular pulmonar (RVP)

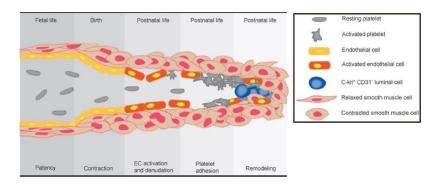
- Flujo de Derecha a izquierda \rightarrow
- Bidireccional (transición) →
- Izquierda a Derecha

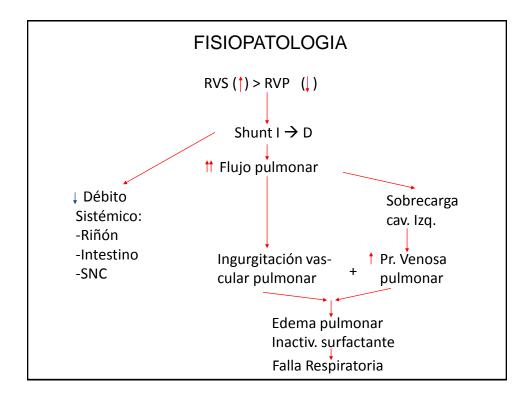



El shunt en el RNPT (30 sem) a las 5h de vida


• Izquierda a Derecha	52%
Predominante izquierda a Derecha	43%
Derecha a Izquierda	2%

Neoreviews 2004;5:86-97 Hemodymamics and cardiology.2012


Introducción Cierre Funcional • Grosor capa muscular • Balance entre vasodilatadoras y vasoconstrictoras Vasoconstricción → Obliteración de Cierre vasovasorum capa media Anatómico En el prematuro capa delgada → vasoconstricción sin hipoxia • 26-27 semanas 30% Prematuro • 25 semanas 24% Arch Dis Child Fetal Neonatal 2007;92:498-502



ROL DE LAS PLAQUETAS EN CIERRE DEL DAP

PATENT DUCTUS ARTERIOSUS OF PRETERM INFANT Pediatrics 2010; 125; 1020-1030

Fisiopatología

Efecto Fisiopatológico a nivel Pulmonar

Consecuencia clínicas se relaciona con el grado del shunt Izquierda-Derecha y disminución de la RVP

- Exposición vasculatura pulmonar a la presión sistémica
- Aumento Flujo pulmonar

En el prematuro con SDR hay aumento de la presión capilar y disminución presión oncótica

- Produce edema intersticio y alveolar, lo que es compensado por
- Aumento Flujo linfático 24-72 h

Biol Neonate 2005;88:192-201

Efecto Fisiopatológico a nivel Pulmonar

Si se sobrepasa mecanismo compensatorio

- Alteración mecánica pulmonar
- Alteración intercambio gaseoso

Estudios animales mostraron que no hay disminución de surfactante o aumento proteínas. Solo aumento de agua a nivel pulmonar

- Tratamiento con (-) COX aumenta expresión de canales epiteliales de Na+
- Aumentando remoción de fluidos a nivel pulmonar

Biol Neonate 2008;86:330-335 Biol Neonate 2005;88:192-201

Efectos Fisiopatológicos a nivel cardiovascular

Aumento del retorno venoso desde la circulación pulmonar a Al

Aumento de la Precarga VI: Aumento del volumen de fin de diastole

Aumento de la fibra muscular miocardica

Dilatación Al y VI

Disminución resistencia vascular periférica compensatoria

Vasoconstricción localizada selectiva → Redistribución compensatoria

Semin Neonatol;2001(6):65-73 Hemodynamics and cardiology2012

Efectos Fisiopatológicos a nivel cardiovascular

Mecanismo compensatorio: Aumento Volumen eyectivo VI por

- Aumento precarga
- Disminución postcarga

Disminuido en Pt, rápidamente falla apareciendo síntomas sistémicos hipoperfusión

- 1ª Trastorno perfusión periférica y diuresis
- 2ª hipotensión y Acidosis láctica

Biol Neonate 2006;86:330-335 Pediatr int 2003;45:255-262

Complicaciones

Aumento flujo pulmonar

- Edema pulmonar
- Alteración de la mecánica pulmonar y del intercambio gaseoso

Hipoperfusión sistémica

- HIV
- LPV
- ECN

Arch Dis Child fetal Neonatal Ed 2004;90:235-239 Curr opin Pediatr 2004; 16: 146-151

Clínica

Factores asociados a mayor incidencia de DAP en los prematuros

- Menor edad gestacional.
- Enfermedades respiratorias agudas (EMH).
- Uso de surfactante exógeno con caída de la presión de la arteria pulmonar.
- Asfixia perinatal.
- Infecciones.
- Aporte excesivo de líquidos.

Clínica

Depende de

- Tamaño
- Dirección shunt
- Duración
- Extensión robo sistémico
- Mecanismos de compensación miocárdica y otros órganos

Mientras exista compensación hemodinámica y pulmonar bien tolerado

• Baja sensibilidad y especifidad diagnostico clinico primeros días

Ann Pediatr (Barc) 2008;69(5):454-481

CUADRO CLINICO

- Se presenta en RN pretérmino que está recuperándose de EMH y que se deteriora presentando hipoxemia y acidosis (mixta) requiriendo aumento de parámetros de VM
- Con el uso de surfactante la sintomatología aparece más precozmente.

Síntomas y signos aparecen en forma tardía:

- Soplo generalmente sistólico, sub-clavicular izquierdo irradiado a dorso.
- Apneas (es el signo más precoz)
- Taquicardia > 180 por minuto
- Taquipnea > 60 por minuto
- Pulso saltón
- Hipotensión o aumento de la presión diferencial
- Hepatomegalia (ocasional)

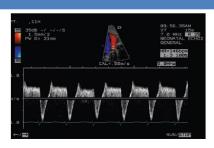
Clínica

DAP hemodinamicamente significativo

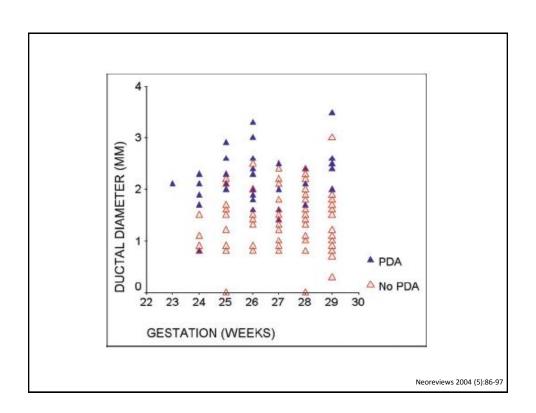
 Estado en que shunt Izquierda a derecha produce sobrecarga cardiaca sobrepasando los mecanismos compensatorios

Ecocardiografía

- LA:AO >1.4 Sobrecarga corazón izquierdo
 - Falseado por FO y CIA
- Tamaño DAP 1.6-2.0 mm
- Estimación flujo ductal


Hemodynamics and cardiology 2012 Ann Pediatr (Barc) 2008;69(5):454-481

Clínica


Diámetro ductal precoz predice

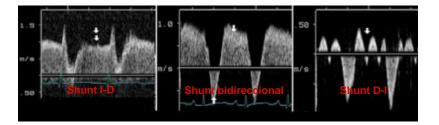
- Persistencia DAP
- Falta cierre espontaneo

Menor 1.6 mm cierre vasoconstricción

Neoreviews 2004 (5):86-97

EXAMENES

- Gases arteriales (PCO₂ ↑ PO₂ ↓ y Acidosis mixta)
- Rx Tórax: Indice cardiotorácico >0,6
 Aumento opacidad campos pulmonares
- ECG : Poco rendimiento (sobrecarga de VI)
- Ecocardiografía bidimensional con doppler: confirma diagnóstico casi en 100%


Radiografía de Tórax

Signos de edema y congestión pulmonar con o sin Cardiomegalia

DIAGNÓSTICO ECOCARDIOGRÁFICO

Ductus: Características del flujo al doppler

Parámetros que determinan un DAP hemodinámicamente significativo:

- LA/Ao ratio >1.4 -1,5
- Un diámetro ductal >1.5 mm y
- Flujo de final de diástole en la velocidad de LPA > 0.2 m/s
- Flujo diastólico en Aorta descendente

EVALUACION Y MONITOREO DEL DAP

Caract. DAP	No DAP	Shunt ID pequeño	Shunt ID moderad o	Shunt ID Grande
Tamaño DAP	0	<1.5 mm	1.5-3.0 mm	>3 mm
Vmáx DAP m/seg	0	>2	1.5-2	<1.5
Peak flujo diast. API	0	<30cm/seg	30-50 cm/seg	>50 cm/seg

EVALUACION Y MONITOREO DEL DAP

Sobrecir. pulmonar	No DAP	Shunt ID pequeño	Shunt ID moderado	Shunt ID Grande
Al/Ao	1.13±0.23	<1.4:1	1.4±1.6:1	>1.6:1
VI/Ao	1.86±0.29	-	2.15±0.39	2.27±0.37
E/A	<1	<1	1-1.5	>1.5
TRIV (ms)	<55	46-54	36-45	<35
ITSVI	0.34±0.09	-	0.26±0.03	0.24±0.07

EVALUACION Y MONITOREO DEL DAP

Hipop. sistémica	No DAP	Shunt ID pequeño	Shunt ID moderado	Shunt ID Grande
F.diast. Retrog.Ao	10%	<30%	30-50%	>50%
Vol. Eject. Ao ml/kg	≤2.25	-	•	≥2.34
GC VI ml/Kg/min	190-310	-	-	>314
GCVI/VCS	2.4±0.3	-	-	4.5±0.6

DIAGNOSTICO DIFERENCIAL

- Ductus asintomático con estenosis fisiológica de ramas pulmonares.
- Ductus sintomático con soplos continuos (fístulas AV) que son de rara ocurrencia.

TRATAMIENTO

TRATAMIENTO PREVENTIVO

- PREVENCION DEL PARTO PREMATURO
- CORTICOIDES PRENATALES

MEDIDAS GENERALES

- · Corregir anemia
- Restricción hídrica cuidadosa (80% requerimientos)
- Optimizar soporte ventilatorio (corregir hipoxemia e hipercapnea)
- Considerar descontinuar alimentación

Tratamiento Respiratorio

Aumentar PEEP

• Disminuir Shunt Izquierda a derecha

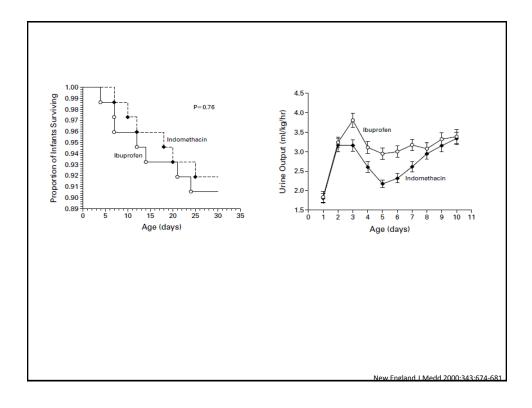
Cuidado con O2

- Ayuda a cierre del DAP pero aumenta el Shunt
- Centros con target de saturación más bajos tienen más DAP pero no más necesidad de ligadura

Jbiol Neonate 2005:;88:192-201

Tratamiento Cierre farmacológico

Éxito Indometacina e Ibuprofeno


• 75-93%

Efectos adversos escasos

- Reversibles
- Con las primeras dosis

Jpediatr 2007;150:210-219

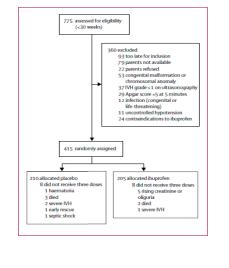
Early Human Development2009;85:151-155

Neurodevelopmental outcome after COX inhibitor treatment for patent ductus arteriosus

C. Rheinlaender, D. Helfenstein, C. Pees, E. Walch, C. Czernik, M. Obladen, P. Koehne*
Department of Neonatology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Germany

- Estudio retrospectivo
- Cierre farmacologico con Indometacina o Ibuprofeno
- Protocolo de Hospital

Table 4 Follow-up data of both COX inhibitor therapy groups.


Followed at two years	COX inhibitor therapy			
	Indomethacin (71 infants)	Ibuprofen (70 infants)	р	
Hearing level>35 dB, n (%)	7 (10)	7 (10)	0.81	
Hearing aid	0(0)	2(3)	-	
Blind	1(1)	1(1)	-	
Free walking at 24 months, n (%)	67 (94)	67 (96)	0.71	
CP	8(11)	6 (9)	0.65	
Griffiths DQ 22 months < 88 or Bayley MDI 24 months < 70, n (%)	23 (32)	15 (22)	0.14	
Composite poor outcome	27 (38)	19 (28)	0.17	

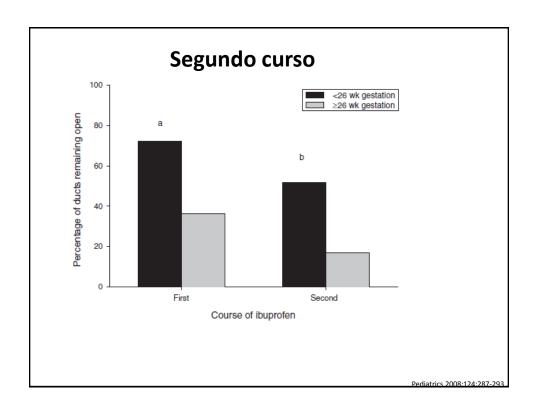
Early Human Development;86:97-92

Prophylactic ibuprofen in premature infants: a multicentre, randomised, double-blind, placebo-controlled trial

Bart Van Overmeire, Karel Allegaert, Alexandra Casaer, Christian Debauche, Wim Decaluwé, Ann Jespers, Joost Weyler, Inge Harrewijn, Jean-Paul Langhendries, and the Multicentre Ibuprofen Prophylaxis Study (MIPS) Investigators*

- Estudio clínico randomizado controlado
- RNPT 24-30 semanas

Lancet 2004:1945-1949


	Placebo (n=210)	lbuprofen (n=205)	Relative risk (95% CI)
Grade 3 or 4*	18 (9%)	17 (8%)	0-97 (0-51-1-82)
Grade 2	11 (5%)	13 (6%)	1-21 (0-56-2-64)
Grade 1	37 (18%)	37 (18%)	1.02 (0.68-1.55)
Total	66 (31%)	67 (33%)	1.04 (0.79-1.38)

Data are number (%). *Primary endpoint.

Table 1: Occurrence of intraventricular haemorrhage

	Placebo (n=210)	lbuprofen (n=205)	р	Treatment effect* (95% CI)
Complications				
Death	25 (12%)	23 (11%)	0.83	0.94 (0.55 to 1.61)
Necrotising enterocolitis stage 3	12 (6%)	6 (3%)	0-16	0.51 (0.20 to 1.34)
Cystic leucomalacia	5 (2%)	10 (5%)	0-17	2.05 (0.71 to 5.89)
Days on ventilation†	4 (1-8)	4 (2-10)	0.49	
Days on oxygen†	24 (6-44)	25 (6-52)	0-36	
Bronchopulmonary dysplasia‡	97 (46%)	103 (50%)	0.41	1.09 (0.89 to 1.33)
Chronic lung diseases or death	50 (24%)	60 (29%)	0-21	1.23 (0.89 to 1.70)

Lancet 2004:1945-1949

Tratamiento Cierre farmacológico

Ibuprofeno

- Igual efectividad que Indometacina en cierre Ductal (dependiente EG)
- Produce menos oliguria que Indometacina
- No afecta circulación cerebral y circulación mesentérica a diferencia de Indometacina
- Uso precoz mejora tasa de éxito al igual que Indometacina
- · Uso profiláctico no muestra beneficios
- · 2 curas son seguras y efectivas
- Sólo reportes de casos HPP

ESQUEMA DE TRATAMIENTO **INDOMETACINA**: mg/kg/dosis fraccionada cada 12 horas .

Edad del RN	1° dosis	2° dosis	3° dosis
<48 horas	0,2	0,1	0,1
2-7 días	0,2	0,2	0,2
>7 días	0,2	0,25	0,25

ESQUEMA DE TRATAMIENTO IBUPROFENO: mg/kg/dosis fraccionada cada 24 horas .

1ª DOSIS	10 mg/Kg
2ª DOSIS	5 mg/Kg
3ª DOSIS	5 mg/Kg

CONTRAINDICACIONES (relativas)

- Nitrógeno ureico > 30 mg%
- Creatinina plasmática > 1,6 mg%
- Diuresis < 0,6 ml/kg/hora
- Plaquetas < 25.000 mm²
- Enterocolitis necrotizante

TRATAMIENTO...

- Considerar suspender alimentación durante el tratamiento...
- Después del tratamiento, efectuar una nueva ecocardiografía, si persiste el ductus, efectuar un 2°curso del fármaco utilizado

Tratamiento Cierre Quirúrgico

Morbilidades asociadas a ligadura

- Anormalidades neurodesarrollo
- DBP
- ROP

Estudios experimentales en animales

• No ocurriría aumento de la alveorización

L pediatr 2007: 130:216-219

The Role of Patent Ductus Arteriosus Ligation in Bronchopulmonary Dysplasia: Reexamining a Randomized Controlled Trial

Ronald Clyman, MD, George Cassady, MD, James K. Kirklin, MD, Monica Collins, RN, MAED, and Joseph B. Phillips III, MD

- Reevaluación trabajo de Cassady con nueva definición de DBP
- 84 niños < 1500 grs
- Niños con ligadura profiláctica vs Ligadura por sintomas
- ¿Ligadura precoz añade mortalidad?

Table I. Characteristics of total study popul	ation
(n - 94)	

	Control (n = 44)	Prophylactic ligation (n = 40)
Birth weight (g)	795 ± 98	800 ± 125
Gestation (weeks)	27.6 ± 1.5	27.4 ± 1.8
Small for gestational age (%)	26 (59%)	19 (48%)
Non-Caucasian (%)	25 (57%)	26 (65%)
Female (%)	26 (59%)	20 (50%)
5-minute Apgar <6 (%)	16/43 (36%)	9 (23%)
IVH (grade III/IV) (%)	23/41 (56%)	16/35 (46%)
Ductus ligation (%)	23 (52%)	38 (95%)*
Interstitial emphysema or pneumothorax (%)	19/38 (50%)	17/33 (52%)
Necrotizing enterocolitis (%)	13 (30%)	3 (8%)*
Oxygen requirement at 28 days (%)	16 (36%)	16 (40%)
Oxygen requirement at 36 weeks postmenstrual age (%)	4 (9%)	11 (28%)*
Mechanical ventilation at 36 weeks postmenstrual age (%)	0 (0%)	6 (15%)*
Survival beyond 35 weeks postmenstrual age (%)	19 (43%)	23 (57%)
Survival (%)†	18 (41%)	15 (38%)

J pediatr 2009: 154:873-876

Neurosensory Impairment after Surgical Closure of Patent Ductus Arteriosus in Extremely Low Birth Weight Infants: Results from the Trial of Indomethacin Prophylaxis in Preterms

NANDKISHOR S. KABRA, MD, BARBARA SCHMDT, MD, MSC, ROBIN S. ROBERTS, MSC, LOX W. DOYLE, MD, LUANN PAPLE, MD, AVROY FANAROFF, MD, AND THE TRUL OF INDOMETHACIN PROPRYLAXIS IN PRETERMS (TIPP) INVESTIGATORS*

- Estudio descriptivo
- Seguimiento 18 m
- Niños trabajo TIPP- <1000 grs
- Indometacina vs Cx
- N 95

			Unadju	sted	Adjusted analys	es*
Outcome	PDA subgroup	Event rate	Odds ratio	P value	Odds ratio (95% CI)	P val
BPD	PDA-no surgery	127/251 (51%)				
	PDA-surgical closure	67/100 (67%)	1.98	.0057	1.81 (1.09-3.03)	.023
Severe ROP	PDA-no surgery	32/251 (13%)				
	PDA-surgical closure	27/100 (27%)	2.53	.0016	2.20 (1.19-4.07)	.012
Death or neurosensory	PDA-no surgery	155/316 (49%)				
Impairment at 18 months	PDA-surgical closure	65/110 (59%)	1.50	.07	1.55 (0.97-2.50)	.069
Death before 18 months	PDA-no surgery	71/316 (22%)			. ,	
	PDA-surgical closure	15/110 (14%)	0.55	.049	0.56 (0.29-1.10)	.09
Neurosensory impairment at	PDA-no surgery	84/245 (34%)				
18 months	PDA-surgical closure	50/95 (53%)	2.13	.0021	1.98 (1.18-3.30)	.00
Cognitive delay	PDA-no surgery	66/239 (28%)			, ,	
	PDA-surgical closure	41/92 (45%)	2.11	.0034	1.96 (1.14-3.35)	.015
Cerebral palsy	PDA-no surgery	35/245 (14%)				
	PDA-surgical closure	18/95 (19%)	1.40	.29	1.22 (0.64-2.33)	.55

• ¿Causa o marcador?

J Pediatr 2007:150:229-234

Complicaciones cierre quirúrgico DAP

Complicación	Porcentaje
Sangrados o hemorragias intraoperatorios	1,4-10
Fugas de aire	< 5 y 6
Neumotoráx	1 y hasta 13 (4-6)
Quilotórax	1,4-3
Atelectasia	1
Infección	7,8
Infección de la herida	1-1,7
Desgarro ductal	2-2,5
Mortalidad	0-10
Hipertensión	2
Lesión nerviosa con parálisis de cuerdas vocales	0,8 y hasta 8,8 (3-5)
Hipotensión transitoria por inducción anestésica hipoxia pasajera y o atelectasia del pulmón izquierdo	Frecuente
Requerimiento de vasopresores por hipotensión	32
Ligadura de arteria pulmonar izquierda	Informes de casos
Recanalización del ductus o fracaso de la ligadura convencional	Informes de casos

26

CAMBIOS HEMODINÁMICOS POSTCIRUGÍA

Cambios hemodinámicos postligadura

"Sindrome cardiaco postligadura"

- Hipotensión sistémica
- Edema pulmonar
- Disfunción miocárdica
- Aumento drogas vasoactivas

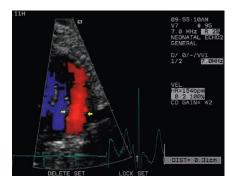
Por tanto deterioro antes que la mejoría...

- 1/3 RNPT requiere DVA
- 50% delos RNPT < 1000g

Journal perinatol 2007;130:216-219

Arch Dis Chils Fetal and neonate2007;92:424-427

Cambios hemodinámicos postligadura


Cierre brusco DAP Disminución Precarga Aumento RVS-Postcarga Disminución GC Izquierdo Disfunción contráctil

> Journal perinatol 2007;130:216-219 Hemodymanics and cardiology2008

Changes in Myocardial Function and Hemodynamics after Ligation of the Ductus Arteriosus in Preterm Infants

SHAHAB NOOR, MD, PHILIPPE FRIEDLICH, MD, MS EPI, ISTVAN SERI, MD, PHD, AND PIERRE WONG, MD

- Estudio Descriptivo prospectivo
- Cambios hemodinamicos DAP quirúrgico
- 23 < 1500g
- Ecocardio 2h pre, 2 y 24h postcirugía

Journal perinatol 2007;130:597-602

	Preligation (-2.3 hours)		Postligation (2 hours)		Postligation (23.5 hours)		P	P	P	
	n		n		n		value ¹	value ²	value ³	ANOVA
Systolic BP (mm Hg)	23	51.9 ± 9.4	23	49 ± 9.8	23	51.1 ± 9.8	NS	NS	NS	NS
Diastolic BP (mm Hg)	23	25 ± 4.8	23	27.2 ± 4.1	23	28.7 ± 5.5	NS	0.036	NS	0.04
Mean BP (mm Hg)*	23	36 ± 7	23	37 ± 8	11	40 ± 10	NS	NS	NS	NS
Dopamine (μg/kg/min)*	23	8 ± 8.2	23	7.5 ± 7.5	11	7.8 ± 11.9	NS	NS	NS	NS
Mean airway pressure (cm H ₂ O)*	22	9.5 ± 1.7	22	9.5 ± 1.8	10	9.7 ± 2.3	NS	NS	NS	NS
SF (%)	23	38 ± 7	23	33 ± 8	11	36 ± 8	NS	NS	NS	NS
VCF _C (Circ/S)	23	1.37 ± 0.25	23	1.40 ± 0.41	11	1.39 ± 0.4	NS	NS	NS	NS
WS (g/cm ²)	23	18 ± 8	23	18 ± 9	11	18 ± 8	NS	NS	NS	NS
Stress-velocity Index (z score)	23	-0.4 ± 1	23	-0.6 ± 1.9	11	-1.1 ± 1.8	NS	NS	NS	NS
LVO (mL/kg/mln)	23	335 ± 106	23	222 ± 66	11	246 ± 77	.0001	.02	NS	0.0001
RVO (mL/kg/min)	22	372 ± 108	22	343 ± 113	Ш	345 ± 109	NS	NS	NS	NS
Heart rate (bpm)	23	157 ± 8	23	156 ± 11	11	158 ± 11	NS	NS	NS	NS
LVIDD (cm)	23	1.4 ± 0.26	23	1.24 ± 0.25	-11	1.25 ± 0.23	NS	NS	NS	NS
E (cm/s)	21	53 ± 13	20	38 ± 9	- 11	44 ± 12	.0001	NS	NS	0.0005
A (cm/s)	21	61 ± 11	20	45 ± 12	11	52 ± 12	.0001	NS	NS	0.0003
Ea, septal (cm/s)	18	4.2 ± 1	18	3.3 ± 1.1	- 11	3.7 ± 1.1	142	142	142	142
Ea, lateral (cm/s)	18	3.9 ± 1.5	17	3.4 ± 1.2	10	4.1 ± 2	NS	NS	NS	NS
E/A	20	0.88 ± 0.18	20	0.86 ± 0.16	Ш	0.83 ± 0.1	NS	NS	NS	NS
E/Ea, septal	17	12.8 ± 3	16	12.4 ± 3.8	Ш	12.2 ± 2.8	NS	NS	NS	NS
E/Ea, lateral	17	15.8 ± 7	15	13.4 ± 4.4	10	12.6 ± 4.4	NS	NS	NS	NS
LV MPI	23	0.26 ± 0.10	23	0.53 ± 0.19	Ш	0.39 ± 0.09	.0001	.05	.03	0.0001
LV IVCT+ IVRT (ms)	23	44 ± 13	23	78 ± 20	Ш	63 ± 14	.0001	.007	.05	0.0001
LV ET (ms)	23	172 ± 18	23	151 ± 18	Ш	162 ± 15	.0001	NS	NS	0.0005
SVR (mm Hg/kg/min)	23	109 ± 39	23	167 ± 59	Ш	148 ± 36	.0001	NS	NS	0.0005
•Disminución GC iz	aui	ordo								
	•								. ,	
 Disminución Precarga 					/	correlación				
•Aumento RVS					<	con diámetro				
Adillellio IVV3						$\sqrt{}$	7	-l4		
•Aumento MPI (Inv		0 2 Ev m	ioc	ardica)		•	1	ducta	ı	

Cambios hemodinámicos postligadura

Disminución Gasto cardiaco VI por

- Disminución aguda e "insuficiente" del volumen del llenado del ventriculo
- Deterioro función miocárdica

Considerar otros factores

- Down regulation receptores adrenérgicos cardiacos
- Insufciencia renal relativa
- Alteración tono vasomotor por anestesia

Arch Dis Child Fetal and Neonatl 2007;92:424-427 Hemodymanics and cardiology2012

Otros cambios postligadura

Aumento requerimientos de oxígeno

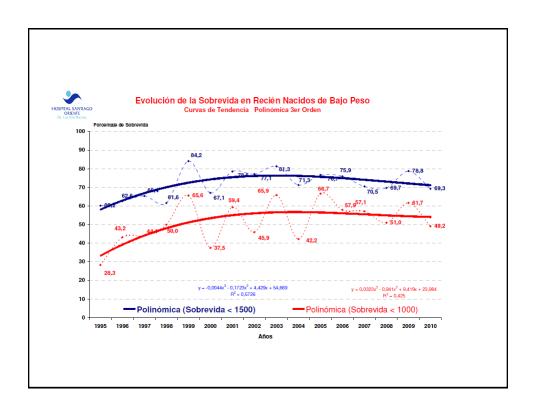
- Falla ventricular izquierda
- Edema pulmonar

Al parecer sin cambios significativos en flujo sanguíneo cerebral

Arch Dis Child Fetal and Neonatl 2007;92:424-427

Conclusiones

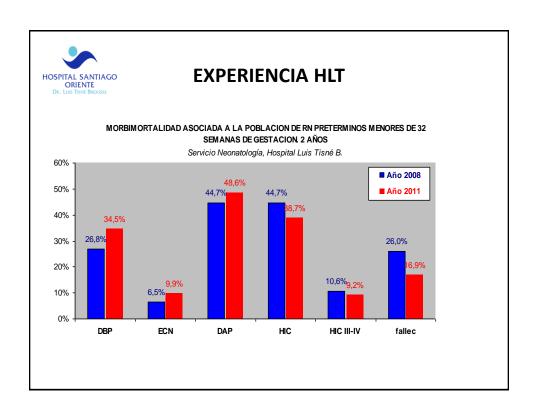
- Ecocardiografía precoz para diagnóstico
- Aumento de PEEP parece ser las estrategias más recomendadas previo al cierre
- No existen diferencia significativas entre Indometacina e Ibuprofeno

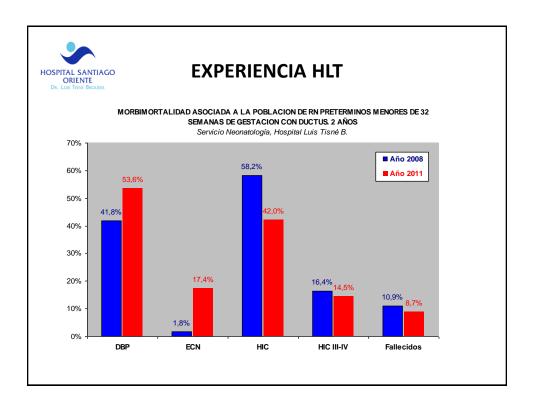

Conclusiones

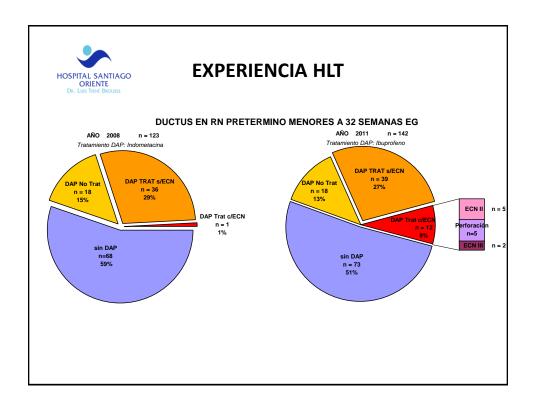
- Ligadura no como profilaxis, sino de rescate precoz
 - Fracaso 2º cura y antes de las 2 semanas
- Ocurren frecuentemente cambios hemodinámicos y respiratorios postligadura
- Postligadura se hace necesario apoyo vasoactivo

IBUPROFENO Y DAP EXPERIENCIA HLT

Dra. Claudia Sánchez R. Dra. Ximena Vascopé M. Dr. Jaime Alarcón R.


EXPERIENCIA HLT


2008 Ultimo año uso indometacina


2011

- N° 123
- 1.67% del total de RNV
- 55 RNPT < 32 sem y DAP
- 37 tratados (67%)
- N° 142
- 1.89% del total de RNV
- 69 RNPT < 32 sem y DAP
 - 51 tratados (74%)

A partir de 2009 el MINSAL distribuye Ibuprofeno IV para uso en cierre de DAP

EXPERIENCIA HLT 5 CON P.INT.

• EG promedio: 24.8 ± 1.4

Peso promedio: 828 ±169

• 2 sexo masculino y 3 femenino

• 4 recibieron al menos 1 dosis de corticoide antenatal

Sin asfixia al nacer

EXPERIENCIA HLT 5 CON P.INT.

- Todos requirieron surfactante
- 3 tuvieron HIC GIII-IV y 2 HIC GI-II
- 4 evolucionaron con DBP y 1 falleció
- 2 recibieron un curso de ibup y 3 dos cursos. 3 fueron a cierre cx
- Promedio hras inicio tto.: 43.2 ± 5.8
- Días vida presentación p.int.: 8 ± 1.8

PROTOCOLO HLT

- Ecocardiografía :
 - RNPT > 28 sem sintomáticos
 - RNPT ≤ 28 sem entre las 12 y 36 horas de vida
- HD significativo :
 - -DAP > 1.5 mm
 - Relación Ao/AI > 1.5
 - Flujo retrógrado Ao desc
 - Flujo diastólico API > 50 cm/seg

PROTOCOLO HLT

- Ibuprofeno IV (Pedea ®)
- 10 mg/Kg y luego 5 mg/Kg cada 24h por 2 veces (3 dosis)
- Ecocardiografía de control
- 2° Curso si es < 2 semanas de vida
- Se suspende alimentación